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FOREWORD

Designers of major cable supported structures are well aware of the
dangers of wind-induced vibrations. Also fatigue distress due to wind
vibration of individual members could be a problem. This study was
concerned with the individual stay cables of cable-stayed bridges and their
vibration due to wind excitation.

Unlike most structural components, there exists no design specification
for high strength bridge cable as used for suspended bridges. The fatigue
problem caused by vibrations due to wind is not necessarily an axial

-

load fatigue problem but is one of cable bending close to the end of the
cable where it is held by an attachment or socket of some type. The
analysis presented in this report should give design engineers some
insight into the problem as it applies to cable-stayed bridges.
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Director, Office of Research
Federal Highway Administration
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This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The
United States Government assumes no liability for its contents or
use thereof. The contents of this report reflect the views of the
contractor, who 1s responsible for the accuracy of the data
presented herein. The contents do not necessarily reflect the
official views or policy of the Department of Transportation. This
report does not constitute a standard, specification, or regulation.
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SELECTED CONVERSION FACTORS TO STANDARD INTERNATIONAL UNITS
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foot-pound

gram-force/centimeter2

meter (m)

meter2 (m 2
)

pascal (Pa)

joule (J)
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6
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Notations

A = Cross-sectional area of the cable

A = Area of cracking

A = Coefficient of solution $ (X)
n n

v

B = Area of semi -ci rcle

B. = ith mode amplitude

B = Coefficient of solution $ (X)
n n

C = A constant

C, = Lift coefficient

C = Coefficient of solution $ (X)
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K
'

C-, = Coefficient of fatigue initiation equation

C
?

= Coefficient of fatigue propagation equation
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E = Elastic modulus

E x-e
= Effective elastic modulus of cable

eff
E = Elastic modulus of straight cable
o 3

E n
= Potential difference across R

R o

F = Total axial force

F = Amplitude of harmonic forcing function

F(x,t), r (t) = External or driving force

G = Bending moment of a wire

G' = Bending moment in deformed configuration

G n
= Coefficient of solution ib (t)

In *n

G = Coefficient of solution ill (t)
2n r

n

H = Twisting moment of a wire

H = Strain hardening correction term
s

3

I = Moment of inertia

K
T

= Stress intensity factor

K
Tr

= Critical stress intensity factor

K
Tn

= Dynamic fracture toughness

K, u = Threshold stress intensity factor
th J

K = Normalized stress intensity factor

L = Length of cable

M = Total twisting moment
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M(x) = Bending moment

M = Material properties

M = Generalized mass
n

N = Normal force in a single wire

N' = Normal force in deformed configuration

N. = Number of cycles to crack initiation

N. = Fatigue life at jth loading
J

N = Number of cycles to crack propagation

N-j- = Total fatigue life

N, , N
?
,...= Fatigue life at loading 1, 2, ... etc.

P = Nondimensional force

P(a) = Probability distribution of applied stress

P(a )
= Probability distribution of ultimate strength

Q = Nondimensional frequency

R = Radius of wire

Re = Reynolds number

R = A variable resistance

R = Specimen resistance

R ,
= Shunt resistance

St = Strouhal number

T = Axial force in cable

T = Generalized force vector
n

T = Magnitude of generalized force vector
on 3

V = Wind velocity

V = Critical wind velocity
cr J

X = Nondimensional independent variable

Y = Nondimensional deflection

Y = Maximum nondimensional deflection of nth mode

Z = A nondimensional function of P and Q

a = Crack length

a = Critical crack length

a. = Initial crack length

b-, = Interaction constant in Van der Pol's equation

b
?

= Another interaction constant

c = Damping coefficient



c = Damping coefficient corresponding to nth mode

c = Maximum fiber distance

d = Diameter of cable

f = Natural frequency of nth mode

f = Strouhal frequency

f(P,Z)= A function of P and Z

g = A function of crack geometry

g(P,Z)= A function of P and Z

h = Thickness of cylindrical shell

I = Horizontal length of cable

m = Number of wires in cable

m
Q , m-i , iru, ... = Number of wires in layers 0, 1, 2 ... etc.

n = Strain hardening exponent

r, r, = Helix radius

r' = Helix radius in deformed configurations

r
Q

= Resistance of plotter circuit

r
D^

r
h )' r

l^
r
h )' r?^ r

h ^
= Helix raclii in layers 0, 1, 2, ... etc.

s- = Standard deviation of variable E,

s = Standard deviation of applied stress
a

s = Standard deviation of ultimate strength
au 3

t = Time parameter

x = An independent variable denoting position

y> y(x,t) = Deflection of cable

y (x s t) = Deflection of cable at nth mode

a = Helix angle

a' = Helix angle in deformed configuration

a = Root of the frequency equation

3 = Contact angle

3 = Root of the frequency equation

T = Specific weight of cable

y = Exponent of the fatigue equation

A = A symbol indicating range

6 = Logarithmic decrement of damping

6 = Crack tip opening displacement

6 = Kroneker delta

6 = Mean free ferrite path
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e = Van der Pol constant

"e = Plastic strain at crack tip
P

tt = A mathematic constant

$ , <3> (X) = nth mode shape corresponding to Y(X)

(j)
= Angle of twist

<J>m
(X) = mth mode shape of y(x,t)

cj) (X) = nth mode shape of y(x,t)

^n
(t) = nth generalized coordinate

C = Van der Pol constant

C = Structural damping factor of nth mode

n = Nondimensional damping coefficient
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E, = A stress variable

X = A function of crack geometry

u = Coefficient of fatigue equation

v = Poisson's ratio
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p = Mass density of air
a

J

p = Radius of curvature
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p' = Radius of curvature in deformed configuration

t = A nondimensional time parameter

a = Applied stress, tensile stress
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INTRODUCTION

This report is the outcome of an analytical investigation on the

fatigue behavior of cables used in cable-stayed and suspension type

highway bridges. The investigation deals with the analytical formulation

of the deflection and bending stress caused by the wind-induced vibration,

as well as the fatigue behavior of bridge cables due to such vibration.

The main results of the present investigation are conveniently

divided into two categories. The first category includes the analysis

of deflection and bending stress and is presented in Chapters 4 and 5

of the report. The analysis is preceeded by necessary background materials

presented in the first three chapters. Mathematical formulations are

kept to a minimum in these chapters and care is exercised to reduce

the results in graphical and tabular forms. This is so done, in our

opinion, to provide useful guidelines to design engineers without

necessarily confusing them by mathematical complexities. For the sake

of completeness, however, the detailed mathematical derivations are

included in Appendix A.

The second category of main results includes the analysis of the

fatigue behavior of bridge cables in terms of the methodologies of

linear elastic fracture mechanics (LEFM). It is not intended in this

report to justify the applicability of LEFM methodologies in describing

the fatigue behavior of bridge cables. It is our understanding that

the existing work on the fatigue behavior of bridge cables is insufficient

to either substantiate or refute the results obtained during the course

of this investigation, and presented systematically in Chapter 6.

We do not wish to suggest that the results in this chapter be used

by design engineers without discretion. It is our opinion, however,

that in the absence of any design guidelines, the present report is

at least able to provide some directions at which further research

should be aimed.

1



In line with the above statements, we draw some concluding remarks

in Chapter 7 of the report and recommend future research programs in

this area in Chapter 8. The remarks are mostly concerned with the

applicability of the results herein to a practical design situation.

We note that a design engineer can apply the results in Chapters 4

and 5 directly to a design situation provided all criteria and assumptions

underlying the analysis are properly met. We also note that a design

engineer can use the results in Chapter 6 to obtain an order of magnitude

estimate for the fatigue behavior of bridge cables. However, much

research is needed, as outlined in Chapter 8, to arrive at a stage

whereby all pertinent analytical results can be translated to design

tools for the fatigue design of bridge cables.



CHAPTER 1

BACKGROUND

The concept of using stay cables in bridge design dates back to early

seventeenth century, as we find sketches by Faustus Verantius in Italian books

showing several parallel inclined chain cables holding a bridge deck between

two piers (Figure 1). In 1821, the French architect Poyet suggested a bridge

design (Figure 2) which is conceptually identical to modern-day fan-shaped

cable stayed bridges. The other type of stay arrangement with parallel stays,

called harp-shaped (Figure 3), was suggested by Hatley as early as 1840.

In the United States, however, the cable stayed bridge is a relatively

new concept in bridge design and construction. Between the latter part of the

nineteenth and the early part of the twentieth centuries the use of cable

stayed bridge design lost popularity in most parts of the world including

Europe. One reason for its disuse was the collapse of some cable stayed

bridges during the nineteenth century and subsequent comments concerning

these failures by the famous French engineer, Navier. Therefore, the recent resur-

gence of the cable stayed bridge design makes an accounting of previous

experience in design practice essential. This is particularly so because of

the dramatic failure of the first Tacoma Marrows suspension bridge in the

State of Washington almost 40 years ago.

Designers of modern cable stayed bridges have taken into consideration

special design requirements for the stability of structures. One of the most

important is the wind-induced vibration. Existing literature on this subject

suggests that a significant amount of work has been done to establish methods

of design to insure aerodynamic stability of bridge structures. In many cases,

wind tunnel tests of prototype models of the proposed designs are involved.

However, the complete analysis of the fatigue behavior of individual cables

caused by wind vibration has not been resolved. When a cable is subjected to

wind forces, the air flow divides and recombines about the nearly circular

cross-section of the cable. While we shall explain this phenomenon in greater

detail in Chapter 2 of this report, it is sufficient to briefly remark at this

point that such a phenomenon gives rise to formation and shedding of vortices. When

the wind speed is such that the vortex shedding frequency is equal to one of



Figure 1. Chain Cable Bridge (Leonhardt (*)
)

I

Wt^Ul

Figure 2. Fan-shaped Cable-Stayed Bridge (Leonhardt U )

)

Figure 3. Harp-shaped Cable-stayed Bridge (LeonhardtU
)

)
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the natural frequencies of the cable, a resonant condition can occur. In this

case, if the structural damping is low, the wind force can cause large amplitude

vibration of the cable, and hence large bending stress. Moreover, due to the

harmonic nature of wind force, the bending stress becomes cyclic and repeated.

This gives rise to fatigue loading of the cable.

In the case of cable stayed bridge, the problem of cable fatigue is

further aggravated by a large change of stresses at the fixed ends of a cable.

For this reason, special considerations must be given to the design of end

anchorages which are used to join a cable with other fixed structural components.

It is also necessary for cable materials to have a high fatigue strength.

At the present time, there exists no fatigue design specification for high

strength bridge cables used in suspension and cable stayed bridges. The

available axial-load fatigue data are not sufficient to establish either a

criterion for defining fatigue failure or for establishing general guidelines

for designing cables to withstand high fatigue-load applications.

The lack of design specifications or design guidelines are, by no means,

without reason. The foremost difficulty lies in analytically describing the

fatigue behavior of a cable by using conventional fracture mechanics methodologies,

A second, but related, problem arises in attempts to relate the fatigue life of a

cable to a wire. Yet, a third problem is related to the experimental determina-

tion of fatigue characteristics of cables and wires. On the other hand, there

is a growing trend to construct stayed structures in the United States, as well

as elsewhere in the world. In keeping with this trend, and to guarantee the

integrity of these structures, it is essential to look into the above diffi-

culties in some detail.

Evidently, the problem of cable fatigue is fairly involved, and a unique

solution to the problem is not feasible within the scope of the present contract.

With this in mind, we shall attempt to address those particular aspects of the

problem which are responsive to the contract objectives. In short, we shall

analytically determine the range of natural frequencies of bridge cables and

their susceptibility to aeolian vibration. Further, we shall analytically

determine the induced bending stresses and fatigue characteristics of bridge



cables. No attempt will be made in this report to develop a new theory of

fatigue characteristics of wires and cables. Nor will an attempt be made in

this report to validate the application of a particular fracture mechanics

methodology in the fatigue design of bridge cables. Such a claim will have

to await an extensive amount of experimental investigation. However, we

intend to develop in this report some guidelines for bridge engineers to

determine frequency ranges that may be crucial to particular cable designs

and configurations. We also intend to provide in this report some guidelines

which will enable bridge engineers to perform an order of magnitude studies

of fatigue life of particular cable designs.



CHAPTER 2

AEOLIAN VIBRATION OF STAY CABLES

2.1 Nature of Aeolian Vibration

The wind-induced vibration of flexible structural members such as wires

and cables has been recognized since antiquity. The fact that a taut wire can

be induced into vibration by a wind stream was experienced by the Greeks as

early as 300 BC. The concept of using wire ropes and cables as structural

members in bridges can be traced back to the early seventeenth century. How-

ever, a systematic study of the wind-induced vibration of the above structural

members did not begin until recently.

As stated before, a long slender elastic structure near resonance conditions

can develop flow-induced oscillations by extracting energy from the flow around

them. The oscillations, coupled with the flow, give rise to a fluid-structure

interaction resulting in a nonlinear response. The fluid-structure interaction

is widely covered by four general classes of phenomena: 1) Vortex-induced

oscillation; 2) Flutter; 3) Galloping; and 4) Buffeting. For a given structural

member and a given flow condition, all these phenomena may be equally important.

On the other hand, in dealing with the wind-induced vibration of stay cables, we

shall consider vortex-induced oscillation to be the most important fluid-structure

interaction. A detailed description of the mechanism of vortex shedding and

analysis of the vortex-induced excitation of stay cables will be given in the

next section. For the sake of completeness, a brief description of other classes

of interaction phenomena will also be provided in Section 2.3 of this Chapter.

2.2 Vortex-Induced Excitation of Stay Cables

2.2.1 Mechanism of vortex shedding:

Without any loss of generality, we shall consider a stay cable to be a long

slender elastic structure of circular cross-section. The mechanism of vortex

shedding from a stay cable can then be illustrated in terms of the overall flow

pattern around a circular cylinder with increasing Reynolds numbers as shown in

Figure 4. The Reynolds number (Re), a dimensionless parameter characterizing

the flow regime, is a function of the flow velocity, the diameter or the
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characteristic depth of the body in flow, and the kinematic viscosity of the

fluid. For a given fluid medium and a given depth of body in consideration,

the Reynolds number is directly related to the flow velocity. The higher the

Reynolds number, the higher the flow velocity, and correspondingly, the more

turbulent is the flow.

We will now briefly review the wake formulations in various flow regimes.

At extremely low Reynolds numbers, the flow is similar to a small particle

settling in a colloidal solution. In this range there is no wake formation.

At Reynolds numbers between 5 and 10, the boundary layer over the cylinder

begins to separate in a more or less symmetrical fashion, forming a Foppl

vortex pair downstream. The pattern remains stable up to a Reynolds number of

about 40, beyond which the vortex starts shedding because of wake instability.

At about Reynolds number 90, the detached shear layer starts to fold up after

its separation and forms concentrated vortices. The fluid in the vortices,

however, is still laminar, and the vortex street persists downstream for many

diameters. At Reynolds numbers above 300, the shear layer becomes turbulent.

Its separation point moves further around, and the wake width becomes narrower.

Beyond this, the flow pattern remains essentially unchanged, presumably up to

5 5 6
Reynolds number 2x10 . For Reynolds numbers in the range of 2x10 and 3x10 ,

the boundary layer undergoes a transition and the wake is disorganized. At

Reynolds numbers beyond 3x10 , a boundary layer becomes fully turbulent.

The subcritical and the supercritical flow regimes shown in Figure 4 are

important to bridge designers. In the subcritical flow, the wake consists of

easily recognizable and regularly spaced alternating vortices similar to the

Karman street, although the fluid inside the vortices may be turbulent. In

the supercritical flow, there is no well organized vortex street and the

energy in the wake is diffused into a wide spectrum of frequencies, rather

than in a single dominating frequency.

The vortex shedding phenomenon of stay cables described above is associated
St-V

with a frequency f (Strouhal frequency) given by f = -j— where St is

the Strouhal number, V is the wind velocity and d is the diameter of the stay
(?)

cable. The Strouhal number St in honor of V. Strouhal v
' is one of the most

significant parameters that accounts for the vortex shedding phenomenon.



A considerable amount of research has been done to determine the Strouhal

numbers for various structural shapes and to establish relationships between

Strouhal numbers and Reynolds numbers. For design purposes, the Strouhal

number of a cylinder can be considered constant over a broad range of Reynolds

numbers and this constant is equal to 0.2.

If the Strouhal frequency, f , is close to any of the natural frequencies

f of the structure, a nonlinear phenomenon known as synchronization or lock-

in occurs, and in unfavorable conditions, the structure can undergo large

amplitude vibrations. For a structural member of circular cross-section and
(3)

large slenderness ratio, such as stay cable, it has been found ' that

f < f <1.4 f . The maximum amplitude of excursion occurs presumably at the
n s n

K v j

middle of the range. It should be noted here that the vortex shedding does

not necessarily result in an alternating transverse force. This is created

only when there is a suitable afterbody and hence, an alternating lift force.

Besides, while the lock-in of Strouhal frequency with the natural frequency

of the structure will give rise to sustained oscillations, the transverse force

exerted by the vortex shedding is not strong enough to cause a large amplitude

oscillation ^ . Therefore, the magnitude of sustained oscillations depends

strongly upon the lift coefficient of the structure. Structural damping is

another parameter, besides the Strouhal frequency f (or Strouhal number St)

and the lift coefficient, which is of major importance in determining the

amplitude of oscillations and the range of synchronization.

2.2.2 Analytical models of vortex excitation:

The response of structural members under vortex-induced excitation is con-
(5-7)

veniently formulated in terms of various analytical models v

, the most
(5)

noteworthy of which is the one proposed by Hartlen and Currie v
'

. The

latter model employs a Van der Pol-type soft nonlinear oscillator (see Figure 5)

where the fluctuating lift force associated with vortex shedding is coupled to

the body motion. The model is based on the wake-oscillator concept introduced

an

(4)

(8)
by Birkhoff and Zarantonello v

, and oh the experimental results of Bishop

and Hassan

This concept may be applied to a stay cable when the latter is considered

as a circular cylinder vibrating in a direction transverse to the flow. The

10



Figure 5. Hartlen-Currie Model for Vibrating Cylinder
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pair of equations which result from this type of consideration are second

order differential equations of the Van der Pol type. The equations contain
a member of nondimensional parameters including nondimensional damping
coefficient,- v, Van der Pol constants, e and c, interaction constants,
b

]

and b
2

,
and finally, the ratio, siq9 between Strouhal frequency defined

earlier and the natural frequency.

Of the above parameters, v, b
]

, and n can be determined for a given

geometry and for given material properties of a stay cable. The other three

parameters, e, £, and b must be chosen to provide the best fit for experimental
( 9)

data. Such experiments have been conducted, among others, by Jones for

the elastically mounted circular cylinders forced externally by fluctuating

lift components. When the Hartlen-Currie model for the vibrating circular

cylinder was fitted to experimental data, it was found that the dimensionless

amplitude Y(t), and the lift coefficient C, (t) are related to the dimension-

less wind speed and the dimensionless damping as indicated in Figure 6.

In the past various attempts have been made to improve some inherent

discrepancies of the original Hartlen-Currie model. Griffin, et a! .

,

considered additional empirical parameters in the equation for lift coefficient,

Landl introduced a nonlinearity of fifth order in the damping term in the
(12 )

lift equation. Szechenyi assumed a fictitious symmetric aerofoil attached

to the cylinder and examined its oscillation under the action of a periodic

lift force. Iwan and Blevins ^ arrived at the Hartlen-Currie model through

considerations based on the vortex street. All these models basically result

in a relationship between the dimensionless amplitude and the dimensionless

damping factor.

It is not apparent whether these models are readily applicable to flexible

structures such as a stay cable. One serious objection arises because the

measurement of vortex-induced effects in flow past a rigid oscillating
( 3 )

cylinder clearly indicates that the cylinder continues to vibrate in

resonance outside the lock-in range. For a flexible cylinder, this effect will

be more pronounced. A fundamental objection is often raised concerning the

validity of the Van der Pol oscillator to describe the fluid-structure inter-

action, regardless of whether the structure is rigid or flexible. To

12
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circumvent these problems and to achieve the main objectives of the present

investigation, we shall consider, for subsequent analysis, a simplified wind

force model whereby the driving force F(t), has the following form:

F(t) = -y pdV
2
c
L
cosa3

s
t (1)

The term co in the above expression is the circular Strouhal frequency and is

equal to 2-rrf . Further discussion of this model concerning the dynamic

analysis of stay cables will be presented in Chapter 4.

2 . 3 Wake and Other Effects

In general, the wake effect is concerned with the vibration of structural

members located in the wake of other members. For example, if the stay cables

are arranged in a square pattern, a situation can occur wherein an individual

cable lies downwind in the wake of another. In this case, the leeward cable

is subjected to unsteady loading resulting from velocity fluctuations in the

downstream flow. In particular, if the leeward cable is in the proximity of

a high shear gradient of the wake, it may experience a large amplitude

oscillation. This is called wake-induced galloping. Buffeting, on the other

hand, is a wake-induced random oscillation produced by turbulent wind or gust.

Flutter is a self-excited oscillation caused by the interaction of struc-

tural, inertia!, and aerodynamic forces. It is usually a high speed phenomenon

in which aerodynamic forces augment the oscillatory deflections. Flutter of a

flexible bridge member consists predominantly of a torsional type although in

some cases, the torsional vibration may be coupled with a secondary motion due

to transverse vibration. It is important to note that although a stay cable is

not flutter-prone, it may still be subject to buffeting or galloping oscillations

As mentioned earlier, the scope of the present investigation does not cover

an analytical formulation of the latter classes of fluid-structure interaction

phenomena. For this reason, the discussion of these phenomena will be limited

only to this section. The readers are, however, referred to Scanlan and
(to) (14)

Tomko V1 °', Davenport, et al . ,
x

, Irwin

some excellent expositions on this subject.

14
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CHAPTER 3

GEOMETRICAL AND STRUCTURAL CHARACTERISTICS OF STAY CABLES

3.1 Geometrical Characteristics

The structural properties of stay cables and their operating characteris-

tics depend, to a large extent, on the geometry of cable configurations. It

is, therefore, important to investigate the geometrical characteristics of a

stay cable for further analysis of its structural properties. In this section,

we present the results of CHI ASSOCIATES, INC's investigation to this effect

which includes a study of wire geometry in a cable, the determination of con-

tact points and contact surfaces between wires, and the effect of clearance

between wires on the overall geometrical and structural properties of a cable.

3.1.1 Lay Configurations

The two different cable or lay configurations which have been investigated

under this task are: parallel wire configuration and helically wound configu-

ration. These two configurations for a two-layer cable are shown in Figure 7 .

Under the category of helically wound configuration, several constructions

which include single strand operation, and multiple strand operation, are

possible. For the purpose of this report, we shall consider a cable to be

made of a number of layers of individual wires either wound helically or bunched

in parallel "by a single strand operation. Each construction procedure -produces

a unique contact geometry, and different contact geometries give rise to different

amounts of contact stress between the wires. Foregoing this differentiation

at present, let us consider the transverse cross-section of a cable in general.

The cross-section of individual wires are approximately elliptical (see Figure 7a)

In the case of the parallel wire configuration (Figure 7b), the circular cross-

section may be considered as a limiting case of elliptic cross-section where-

by the semi-major axis is equal to the semi-minor axis. Hence, for the

sake of brevity, we will address ourselves to the general case of an elliptic .

cross-section

.

3.1.2 Contact Geometry

If two wires in the same layer are contacting each other, as i s shown

in Figure 8 , the line of contact between these two wires is a helix with

radius r n . The latter is a function of the radius, R, of the wire, the

15
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helix angle or lay angle, a , of the particular layer in question, and the

number of wires, m, in the layer. Also, the angle, 3, between the line

of circumferential contact and that of radial contact as shown in Figure

8, is a function of the above parameters.

Noting the following representations of different layers in a cable,

namely,

Layer (core) r = = r nQ , a = ~, m = 1

Layer 1 r\, r hp a 1? mi

Layer 2 r?, r h2 , a
2 , m2

the geometrical characteristics of different cable configurations may be

determined and compared. We have done this for a 3-layered case (both

parallel and helical) for a given wire radius, R, and for given values of

ai, m]_, a,2, ... etc. The results are shown in Table 1. It is important

to note in this Table that, as the number of layers in a cable increases,

so does the helix radius, r^. Furthermore, the contact angle, 3 , approaches

a limiting value 90° indicating that the contact points of the wires are on

their semi-major axes. This will create clearance between wires in successive

layers of a helically wound cable.

The" study of geometrical characteristics of cables reported herein

essentially follows the work of Chv , Karamchetty^ '°
, and Phillips and

(19)
Costello x

. The detail derivations of complex functional relationships

between r^, 3, and other geometrical parameters mentioned earlier are omitted

here since they may be found in the references above as well as in the monthly

Progress Reports on this project submitted by CHI ASSOCIATES, INC. to the

Federal Highway Administration.

The other geometric parameter of importance is the radius of the curvature

of a wire both in the stressed and unstressed state. For elliptic cross-

section, the radius of curvature p at the contact point in the unstressed state

is given by:

p
c

=
?TnV (2)

17



Figure 8. Contact Geometry of Wires in a Cable
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where r and a have been defined before. In the stressed state, the radius of

ie ev<

(20)

curvature is transformed to qJ . The determination of p' involves the evalua-

tion of elliptic integrals of the type mentioned in Seely and Smith

So far we have confined our discussion to cable geometry and contact

geometry. The knowledge of contact geometry enables us to determine the loca-

tion of contact points or more precisely, contact surfaces across which wires

transmit forces and motion. It is also at these contact surfaces that contact

stresses are generated. For some cable configurations, especially helical,

contact stresses may be significant enough to cause strand nicking which then

acts as a source of fatigue crack initiation. We have, therefore, considered

it relevant to study contact stresses in a cable.

Hruska ^ 21
^

, Leissa ^ 22\ Starkey and Cress ^ Z3\ Stein and Bert ^
24

' are

some of the early workers who analyzed the stresses in wire ropes. A rope

consists of a number of strands and its stress analysis is fairly complex. How-
(19)

ever, the analysis of a strand is relatively simple. Phillips and Costello

analyzed strands by the method of separating the strand into thin wires and

solving the general nonlinear equations. Since a cable is known as strands

among manufacturers, the method used by Phillips and Costello to determine the

contact stresses is applicable. The result of preliminary analysis using the

above method shows that the effect of helix angle on the contact stress

is relatively small. In particular, for parallel wire cables (helix angle of 90

degree) the contact stress approaches a zero value. In view of this and in view

of the fact that in modern cable-stayed bridges, cables consist mostly of parallel

wire configuration, the contact stress will not be considered as a dominant

factor in the dynamic analysis. On the other hand, it should be remembered that

in the case of helical configuration, the contact stress may be responsible for

strand nicking and subsequent initiation of fatigue crack. For such cases,

therefore,' the contribution of the contact stress in determining the total

fatigue ljte of a cable must be taken into account.

3.2 Structural Characteristics

The structural characteristics of a cable which influence its dynamic

response are flexural stiffness and damping. The end anchorage is another

20



important factor that influences the deflections and stresses at the ends of a

cable. We shall discuss this latter factor in detail in Section 3.3 of this

report.

Both the flexural stiffness and the damping depend, among other things,

upon the wire material. Parallel wire cables are made from uncoated stress-

relieved wires which have ASTM Designation A421-77BA. These cables are manu-

factured by the PRESCON Corporation of San Antonio, Texas, INTYCO, Inc.,

Melrose, Illinois, and Bureau BBR, Ltd., Zurich, Switzerland. Helical wire

structural strand with zinc-coated steel wires has ASTM specification A586-68.

Helically wound structural wire ropes are manufactured according to ASTM

specification A603-70. The mechanical properties of these materials are shown

in Table 2.

3.2.1 Flexural Stiffness:

The flexural stiffness of a single wire is easily derived from the knowledge

of its elastic modulus and the moment of inertia. The determination of the

stiffness of a cable, on the other hand, is a little more involved. For example,

the stiffness of a bridge stay cable depends not only upon its elastic modulus

and the moment of inertia, but also upon its length and axial stress.

Ernst( 25
) showed that the effective elastic modulus, Eeff, of a cable

reduced considerably along its length according to the following formula:

2 2
r i e i-i

E „ = E (l + =-£]
eff o \ 19 3 /12o"

in which r = specific weight of cable

I = horizontal length of cable

E„ = elastic modulus of straight cable
o °

o = tensile stress of cable

The above expression indicates that for the given length of a cable, the

reduction in elastic modulus is inversely proportional to the third power of

the tensile stress. In other words, for minimum reduction in elastic modulus,

high stresses and consequently, high-strength steel, must be used for stay-cables.

Since the cable materials under consideration (ASTM A421-77BA and A586-68) are

indeed high strength steel, we shall assume, without further recourse to the above

formualation, that the effective elastic modulus is equal to that of a straight

21
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cable. This assumption means that the only other source of variation in flexural

stiffness along the length of a cable is its moment of inertia.

Consider, for example, a cable made from a number of single wires placed

in several layers. When this cable is anchored at two ends in a cable-stayed

bridge, and is acted upon by an external force or moment system, its curvature

changes along the length. Moreover, a certain geometrical grouping of wires

in a definite pattern occurs along the length. Inside the end-anchorage,

all wires seem to act monolithically as a single elastic body. However, a

few diameters away from the fixed ends the outer wires start to act separately,

leaving only the core wires which tend to group together. Scanlan and Swart

reported a case in which the effective stiffness value of a Pheasent conductor

cable was only 50 percent of its maximum theoretical value. The latter value

corresponds to the case where all wires in the cable are considered to be

"welded" together to form one unit.

Flexural stiffness of a cable can be determined semi -empirically by using

either quasi-static or vibration tests. Specifically, the quasi-static test

consists of applying a sinusoidally distributed transverse loading on a suitably

supported cable segment. The vibration test determines the stiffness from

information on loop length, frequency or strain and displacement. Flexural

stress of a cable can also be determined analytically. The methods differ

according to the cable configuration. Within the scope of this report, we

shall briefly outline two methods, one each for the parallel wire configuration

and the helical wire configuration.

The first method is based on the work of Scanlan and Swart and is

applicable to parallel wire configuration. In this method, the flexural stiff-

ness, EI, is estimated from the knowledge of displacement and curvature using

the following equation:

Ty + M(x)
EI = -yr— (3)

where T = axial force

M'(x) = bending moment

y = cable displacement in tranverse direction

y" = curvature of the cable

23



The displacement, y, is normally obtained from quasi-static tests and the

curvature, y", is determined by numerical integration. In the absence of

any experimental result, however, the alternate approach to determine the

flexural stiffness involves an iteration procedure to solve the equation.

(19)
The second method is based on the work of Phillips and Costello and

is applicable to helical wire configuration. In this method, the total axial

force, F, and the total twisting moment, M, on a cable are expressed in terms

of forces and moments acting on individual wires as follows:

F = m (TSin a' + N' Cos a') (4a)

M = m (HSin a' + G' Cos a' + Tr' Cos a'-N'r'Sina' )
(4b)

where T is the axial force in a single wire, N is the normal force, G and H are

bending and twisting moments respectively, and where r and a are helix radius

and helix angle respectively. The term m in the above expressions denotes the

number of wires in a cable. The terms N', G' , r' and a' are the corresponding

values of N, G, r, and a in the deformed configuration. The flexural stiff-

ness can now be defined as the partial derivative of the total moment, M, with

respect to the angle of twist, cf>, i.e.
9M

EI
3
~ (5)

The procedure, therefore, involves computation of partial derivatives of T, N,

G, H, etc. with respect to cj). The detail computation is shown in reference (27).

We have used the above methods to compute the flexural stiffness of a

sample lx7-wires cable of both parallel and helical configurations. For the

purpose of illustration, we have selected a wire radius of 0.0825 inch (0.21 cm).

The cable has been assumed to be subjected to a varying axial force in the range

between 5000 lbf (22.24 kN) and 25,000 lbf (111.20kN). These values are

representative of the axial cable stress normally encountered in design practices,

For helical configuration, five different helix angles ranging from 74 degrees

to 78 degrees have been chosen.

The results of our calculation show that the flexural stiffness of a cable

is a function of its configuration or, more precisely, of its helix angle. In

this particular example, we have assumed that the wires in the cable are not

24



"welded" or grouped together. Hence, in both parallel configuration and

helical configuration, the respective minimum values of moment of inertia at

any section of the cable have been considered for computational purpose.

Such consideration has led to a variation of nearly five percent in the effec-

tive flexural stiffness value. It is, therefore, expected that as the cable

diameter becomes larger, and as the wires in the cable tend to group together,

the variation in effective flexural stiffness may increase considerably.

This is in agreement with Scanlan's findings reported earlier. More important

to note at this point, however, is the fact that the wide variation of the

flexural stiffness of a cable has little effect on its natural frequencies.

In the next chapter in dealing with the dynamic analysis of a cable, we shall

present some supporting evidence to this effect.

3.2.2 Damping:

The damping of a stay cable is due to viscous and friction forces which

always oppose the excitation of the cable. The damping is usually expressed

in terms of the logarithmic decrement, 6, defined to be the natural logarithm

of the ratio of two successive peak amplitudes in a free, decreasing oscilla-

tion. If B- and B.
+

, are the ith and (i+l)th amplitudes, respectively, the

damping is given by:

B.

6 = Log ~ (6)
e B

i + 1

For cables, in general, the value of 6 is usually on the order of 0.04 to 0.08.

The above definition of damping is particularly applicable for a single

degree of freedom system. For a continuous structure, such as a cable, it is

often advantageous to consider another definition of damping coefficient,

namely, the viscous damping coefficient. The latter, denoted by c , is propor-

tional to mass per unit length, pA, and the natural frequency, oo , of the nth

mode (n= 1, 2, . . . ). The relationship is given by:

c = 2c w pA (7)
n n n v '

where r is the structural damping factor. This factor is approximately equal

to 6/2tt. Noting that, for higher modes 6 and hence t; decreases as co increases,

one can assume for design purposes that the product c co is constant. This
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effectively means c is constant. Denoting this constant by c, one can write:

c = -A wiPA (8)

where oo-, is the fundamental frequency of the cable. In the dynamic analysis

of a stay cable, we are going to make use of the above approximation for the

viscous damping.

3.3 End Anchorage

When cables are used as structural members, several considerations must

be taken into account to determine their load bearing capacities and performance

characteristics. One of these considerations is the end anchorage which connects

a cable to other supporting structural members. The end anchorages vary widely

in their design and manufacturing techniques depending on the size and properties

of the cable to which they are attached. However, they have one basic function

in common, that is, they transfer load from the cable to other structural members,

Consequently, the dynamic response and the fatigue life of a cable depend much

on the type of end anchorage.

Early versions of end anchorage design for large diameter cables used the

molten zinc type sockets. However, the pouring temperature of zinc alloy was

found to considerably affect the fatigue strength of wires in the socket.

An excellent solution to overcome this problem was
-

devised in Germany^ 29
'

30 '.

The so-called "HiAm-anchorage" was subsequently developed by the Bureau BBR-

Zurich, and it was reported that the fracture of wires in a cable was almost

equally distributed over the length of the cable so that the anchorage was not

any weaker than the cable itself. The schematic of a typical HiAm-anchor is

shown in Figure 9a. Another end anchorage widely used in the United States

has been developed by Prescon Corporation of Texas. A schematic of this

anchorage is shown in Figure 9b.

The HiAm-anchorage system consists of button heads bearing on a stressing

ring which is threaded both internally and externally. The ring is recessed

in the end of the member before stressing. The Prescon system is similar to

the Hi Am system, but rather than using a stressing ring which is recessed before

stressing, the button heads bear directly on a round plate which is threaded

into the socket. An overview of different cable constructions with partirular
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a. The Schematic of a Typical Hi -Am Anchor

b. The Schematic of a Prescon Anchor

Figure 9. Improved High Strength Anchorages for Cable
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note on various end anchorages may be found in reference (31). The reader is

also referred to a recent paDer on fatigue resistant tendons for cable-stayed

construction by Birkenmaier( 32
)

.

The effect of end anchorage on the dynamic response and the fatigue

behavior of a cable system can be studied analytically by considering proper

boundary conditions in solving the dynamic equation. The choice of boundary

conditions, however, depends on the nature of load transfer between the cable

and the socket. The existing literature on stay cables does not provide suf-

ficient information on the latter subject. We, therefore, consider this to

be an area of possible future research.

Within the scope of this project, we have made an attempt to address this

problem in two different ways. In the first method, the dynamic equation of

a cable is solved for the most general case of arbitrarily specified elas-

tically constrained end conditions. The detailed solution procedure is given

in Appendix I. In the second method, the solution of the dynamic equation of

a cable for the case of fixed end conditions is found. The deflections and

bending stresses at the ends of a cable can also be evaluated by substituting

the elastic constants with proper viscoelastic parameters. Such consideration

is based on the assumption that the end anchorage is viscoelastic rather than

elastic in nature.

In concluding this section, we note that the end anchorages currently used

in cable design reduce the theoretical bending stress at the wire ends of a

cable by as much as 50 percent. Moreover, the use of HiAm and Prescon type

anchorages insure that the bending stress is uniformly distributed over the

entire length of the cable rather than having a large magnitude at the ends.

Based on these facts, it seems that the dynamic response and the fatigue behav-

ior of cable ends under the commonly occurring wind forces are not significantly

different than those pertaining to any other cross sections of the cable. On

the other hand, for gusts, random wind loading and other cases, the fatigue

behavior of cable ends may cause serious concern even in the presence of high

fatigue resistant type anchorages. In these cases, special care should be taken

to design cable ends as well as in attaching them to other structural members.
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CHAPTER 4

DYNAMIC ANALYSES OF STAY CABLES

The governing differential equation of the motion of a stay cable has the

following general form:

»A +C
ti

+ !P <El|£-T)-F(x.t) (9)

where y = y(x,t) = displacement in transverse direction

p = mass density

A = cross sectional area

c = damping coefficient

F(x,t) = external force in transverse direction

EI = flexural stiffness

T = axial force

Assuming that the flexural stiffness is constant along the length of the cable,

the above equation can be rewritten as:

pA^+cft + EI |£ -T|£ -F(x.t) (10)

The solution of the above equation is given by:

y(x,t) =
E<J> (x)(j) (t) (11)
n n n

where d> (x) = nth natural mode of the cable
n

cj) (t) = nth time-domain solution of the equation

The detail solution of equation (10) can be found in Appendix A. In the

following section of this chapter, the expressions for natural frequencies and

normal modes of a stay cable will be derived.

4. 1 Natural Frequency and Normal Modes

The natural frequencies and mode shapes of a cable are obtained from the

governing equation for the small amplitude, free, transverse vibration as

follows:

EI ^ - T 4fZ _ pAco
2
y = (12)

dx
1* dx 2

This equation can be derived from equation (10) by a separation of variables

technique and by neglecting the damping and the external forcing terms.

Nondimensionalizing equation (12) by setting

Y = -X and X = -f (13)
L L
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where L is the length of the cable, and dividing through by ETI/L
3

, we

obtain:

d 4 Y d 2
Y

TL 2

in which P = py— = nondimensional force
(15a)

= nondimensional frequency (15b)

The nondimensional parameter Y in the above equation is related to the mode

shape as follows:

Y(X) = Z$_(X)
n M

where $ (x) = nth natural mode of the cable in terms of
n

(16)

nondimensional parameter X.

(33

)

Equation (14) has been solved previously by Chi
v

' for the most general

case of elastically constrained end conditions. In Appendix A of this report,

the detailed derivation of frequency equation and the solution of equation

(14) are given. For the purpose of computing natural frequencies, we shall,

however, make use of the relationship between the nondimensional force, P, and

another nondimensional quantity denoted by Z
2

. The latter is actually a

function of P and Q (z
2 = 4Q/P

2
) defined earlier; however, it has been found

that the use of nondimensional parameter Z
2 instead of simplifies the

formulation of deflection and bending stress considerably. For this reason,

in the subsequent nondimensional analysis, we shall consistently use P and Z
2

being the two most important nondimensional parameters.

The relationship between P and Z
2

is obtained from the frequency equation

of small amplitude, free, transverse, vibration of a cable. The analytical

method is outlined in detail in Appendix A. In this section, a graphical

representation of the relationship between P and z
2 is shown in Figures lo

through 14 for certain practical ranges of such parameters as the cable size,

cable length, axial tension, etc. The ranges are given below:

Cable size: 1 layer cable - 7 wires (smallest section)

15 layer cable - 631 wires (largest section)

Wire radius: 0.125 inch (0.318 cm)

Cable length: 50 < L < 600 [ft]

15.2 < L < 182.9 [m]
" ~ 30



Axial tension: 60 < a < 120 [ksi]

413.7 < a < 827.4 [MPa]

It should be noted that Figures 10 throuah-14 correspond to the cable

configuration with both ends fixed. This particular end condition adequately

represents the dynamics of cable in a cable-stayed bridge. The figures also

correspond to the first 45 natural modes of vibration. The computation of

natural frequencies for this somewhat high mode value is essential since

flexible slender structures are also often known to vibrate in resonance at

higher modes.

Substituting the values of P and Q from equations (15a) and (15b) in the

expression for Z
2

, it is seen that:

z
a = J^_ = WEI (17)

From the knowledge of axial tension, cable length, elastic modulus, and moment

of inertia, one can determine the nondimensional force, P. The nondimensional

parameter, Z
2 can then be determined from the graphs in Figures 10 through 14.

It is further seen from the expression for Z
2 that the natural frequency, w,

is given by:

oj
=

a 2
A

\i 4pEI

Z = w ri Z
fb

Z (18)

where oj
f

, is defined as a bending frequency factor given by:

/ a
2 A

w
fb

=

/ W~ (19)

For a cable of given length, diameter, and tension, the bending frequency

factor is a constant, and can be easily computed. The natural frequency, w ,

of any mode n can therefore be found from equation (is) by substituting proper

values of Z from the graphs. The use of graphs and the computation of natural

frequencies will be illustrated for specific numerical examples in Chapter 5

of this report.

The normal modes $ (X) are determined from the solution of equation (14)

upon substitution of the relationship shown in equation (16)- The general form
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of the solution is given by:

$
n
(X) = A

n
sina

n
X + B

n
cosa

n
X + C

n
sinh3

n
X + D

n
cosh3

n
X (20)

where A , B , C , D are constants to be determined from the given boundary
n n n n 3 J

conditions and where a , 3 , are the roots of the frequency equation. The

derivation of the expression for normal mode is discussed in detail in

Appendix A.

We mention here that a long slender flexible cable with both ends fixed has

a response which is very similar to that of a string. This is also evident

from the fact that the root, 3 , of the frequency equation in Appendix A is

large (usually > 10) for long cables. Under this circumstance, the mode shape

expression in equation (20) reduces to the following form:

a
$ (X) = sina X - -£- cosa X (21)
n n 3 n

'

It is now easy to determine the mode shape from the above equation. As an exam-

ple, we have computed the mode shapes of a Group IV Pasco-Kennewick bridge cable

up to 10 modes for two different values of axial tension. The results are shown

in Figures 15 and 16.

4.2 Wind-Induced Vibration of Stay Cables

Having obtained the natural frequencies and mode shapes of small amplitude,

free, transverse vibration of a stay cable, we now proceed to analyze the wind-

induced vibration of the cable as a forced vibration problem. It was earlier

assumed in Section 2.2.2 that wind force is spatially independent and harmonic

in nature. Further, it was assumed in Section 3.2.2 that the structural

damping, c, is proportional to the mass per unit length of the cable. Under

these two assumptions, equation (10) can be solved to determine the response

of the cable to wind loading. The detailed solution is given in Appendix A.

In this section, we shall discuss the physical basis of the analytical

derivation presented in Appendix A, as well as the results obtained therein

in relation to the vortex-induced vibration of stay cables.

In Section 2.2.1 of Chapter 2 dealing with the vortex shedding mechanism
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MODE # 2 3
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MODE # 4 5
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MODE # 7

MODE # 8

MODE 4 9

MODE # 10

Figure 15. Pasco-Kennewick Bridge - Group IV Cable Mode Shapes (F
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Figure 16. Pasco-Kennewick Bridge - Group I Cables Mode Shapes (F = 1000 kips)
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of circular cylinders, we have given an expression for the Strouhal relation,

namely,

f .
SV (22)

s d

where f is the Strouhal frequency. This relationship can be used to deter-

mine f if the wind velocity, V, is known. Conversely, if one assumes that f

is known from the vortex-induced resonance condition (for example, f < f < 1.4 fK
n s n

for resonance), one can find the critical wind velocity, V , simply by transposing

the equation (22) in the following form:

f .d co d

V =-^r~ =
"

(23)
cr St 2-rrSt

where, for simplicity, f has been equated to the natural frequency f .

The rationale for the above type argument is based on the consideration that

we are addressing the subject of wind-induced vibration of stay cables caused

only by the vortex shedding phenomenon. Recalling now the expression for the wind

force model given by equation ( 1), it is seen that:

F(t) = F
Q

costo
s
t = lpdV2

r
C
L
cosa3

s
t (24)

in which the magnitude of wind force, F , can be determined from the knowledge of

V and the lift coefficient, C, . The governing differential equation of cable

vibration (equation (lo)) can now be solved with the above assumptions and the

most general solution is given as:

y(x,t) = F E(J> (x) [G, sinco t + G cosco t] (25)Jy ' o n n In s 2n s
v '

where G-. and G are the coefficients of a particular temporal solution of
In 2n K f

equation (10) and where <j) (x), as before, denotes the mode shape. The detail

derivation of the solution, as well as the derivation of expressions for G,

and G„ are given in Appendix A.

4.2.1 Deflections of cables:

The most general expression for the deflection of a cable with fixed ends

is given by equation (25) above. The expression contains a number of variables

all of which are functions of some basic parameters such as the geometrical and

structural properties of a cable, the applied tension, and the wind velocity

Therefore, it is reasonable to perform a parametric study of the deflection.
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On the other hand, the number of parameters is too large to deal with for a

meaningful parametric study. The compromise lies in grouping the parameters

in some nondimensi onal forms. We have already shown in Section 4.1 of this

chapter how various parameters are grouped together in two nondimensional

guantities, P and Z
2

, and how the relationship between these two guantities

are used to determine the natural freguencies of a cable. In what follows, we

shall consider such an approach to determine the deflection. In particular,

we shall determine a relationship between the maximum nondimensional deflection

and the nondimensional freguency. It should be noted that this is an alternative

to the analysis cited in Section 2.2.2 in connection with the analytical models

of vortex excitation of circular cylinder.

Eguation (25) can be greatly simplified in practical applications, due to

the following considerations. At least in subcritical flow regime, there is

only one dominating driving freguency in the wake. This freguency would

principally excite a single natural mode closest to it, according to the

synchronization theory of nonlinear resonance. Suppose that the freguency

associated with the resonant mode be oj then the deflection expression,

(eguation (25)), is simplified to:

y(x,t) = F
q

(J)

n
(x) [G

ln
sin to

nt
+ G

2p
cos u)

p
t] (26)

It should be noted that G vanishes at resonant conditions. In order
2n

to obtain the maximum deflection, we assume that the mode shape,
<J>

(x), is

normalized. Hence,

y = F G, (?7)J ma x o 1

n

\ L ' >

since the maximum values of d) (x) and sin oo t are both one.r
n n

It is seen that the maximum deflection is simply the product of the

magnitude of wind force, F , and the coefficient, G-, , whose expression is3
o In r

given in Appendix A. The evaluation of G, , however, is fairly involved

since the expression contains generalized mass, generalized force vector, lift

coefficient, damping coefficient, and others. While the detailed analysis

is given in Appendix A, we find it convenient at this point to define a

nondimensional maximum deflection, Y , as follows:
n

/o~ /o~ 6A

d
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where p denotes the density of air. All other symbols in the above expression

are defined elsewhere in the text. As shown in Appendix A, the nondimensional

deflection, Y , in the above form can be expressed as a function of the non-

dimensional parameter, Z
2

. This relationship is shown in graphical form in

Figures 17 and 18 for various values of nondimensional force, P.

4.2.2 Bending Stress:

The bending stress at any point in a cable is related to its curvature at

that point. The general expression for the curvature is obtained by differentiat-

ing equation (25) with respect to x and this gives:

y"(x,t) = F
Q Jj

<j,|;(x) [G
ln

sino)
n
t+G

2n
cosco

n
t] (29)

where y" and <j>" denote the second derivatives with regard to x of y(x,t) and

cf> (x), respectively. Once again, a progressive simplification similar to the

one described for deflection analysis will lead to:

y"(x,t) = F ^(x)G
ln

sinWn t

The maximum curvature at end-fixity is now obtained by evaluating cf)^(x) at x=0

and by equating sinw
n t to 1. This gives:

n

y" = F G, 2*L- (a
2
+ 3

2
) (31)J max o In R n n

n
where a and 3 are, as before, the roots of the frequency equation. The detailed

derivations of the above expression is given in Appendix II.

Defining a nondimensional maximum curvature by

y/p" EI6 y"
X = — max
n

p
a
Vd 2vTL (32)

2

manner to that shown in the previous section. The detail derivation of the

above relationship is given in Appendix A. The relationship between xn
a^d Z

2

is shown graphically in Figures 19 through 21 for the purpose of evaluating

bending stress. The maximum value of the latter can be evaluated by means of

the following equation:

(a.) = E c y" (33)
v

b max z
J max

where c is the maximum fiber distance in the cable.
2

One can compute x in terms of the nondimensional parameter, Z
2

, in a similar
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It should be noted in passing that in the derivation of relationships

between Y and Z
2

, and between x an d Z
2

, the values of Strouhal number, St,

and lift coefficient, C. , are assumed to be 1.2 and 1.4, respectively. These

two parameters appear explicitly in the expressions for Y and x as shown
n n

in Appendix A. We also mention in passing that the dynamic analysis of stay

cables developed in this chapter will be illustrated in detail in Chapter 5

of the report.

>
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CHAPTER 5

NUMERICAL RESULTS OF DYNAMIC ANALYSIS

In Chapter 4, expressions for natural frequencies, maximum nondimensional

deflections, and curvatures have been derived for stay cables in general.

Further, the graphical relationships between these quantities and the non-

dimensional parameters P and Q have been developed in Chapter 4.

In this chapter, we will demonstrate the use of results derived in the previous

two chapters for specific bridge cables. To this end, the following bridge

cables have been chosen for further studies:

1. Pasco-Kennewick Bridge Group I and Group IV cables;

2. Luling Bridge Group I and Group IV cables.

Some of the geometrical properties of these cables are shown in Table 3.

The cross-sectional areas of the cables have been computed on the basis of

information on wire diameter, number of wires, and number of layers. Outer

diameters of cables indicated in the Table correspond to those of polyethylene

pipes which are jacketed on the cables. The minimum and maximum moment of

inertia of these cables are shown; the minimum value corresponds to the case

in which all wires are considered separately, and the maximum value corresponds

to the case in which all wires are grouped or "welded" together to form one

unit. Table 3 also indicates two different levels of applied tension and

corresponding values of axial force to four different cable diameters.

The exact natural frequencies of these cables have been calculated by using

both beam vibration and string vibration theories. For reference purposes, the

results are shown in Appendix B. For long (Group I) cables, frequencies are given

up to the 30th mode. For short (Group IV) cables frequencies are given up to

the 20th mode. The reason for this is that the nominal wind velocities corres-

ponding to the higher frequencies of short cables are outside the range of design

interest for this study. The frequency values corresponding to the beam theory

have been calculated using a value of E = 29x10 psi (200x10' MPa) and using a

maximum value of the moment of inertia, while those corresponding to the string

theory have been calculated by neglecting the stiffness.
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Example 1

In this example, we are going to compute the natural frequencies of a

Pasco-Kennewick Group I cable using the graphs and formulas developed in

Chapter 4. The geometrical and mechanical properties of the cable are:

L = 506 ft. (154.23 m)

O.D. = 6 in. (15.24 cm)

A = 13.89 in.
2

(89.61 cm
2

)

I = 20.53 in.
4

(854.52 cm
4

)max r o

E = 29xl0
b
psi (200x10 MPa)

2

/°= 0.000734
1b

^

S
4
C

(7.85 gm/cm
3

)

The cable is subjected to a tensile stress of 108 ksi (744.66 MPa).

Step 1

In this step, the nondimensional force, P, is computed using given data

and using equation (15a). Thus,

p =
(axA)L

=
108xl0

3
xl3.89x(506xl2)

2

EI
29xl0

6
x20.53

= 92,895

2
The nondimensional parameter, Z , is determined next using Figure 10. For the

2
first four modes of vibration, the values of Z are given bel

Z
2

= 0.464xl0"
3

for n = 1

Z
2

= 1.680xl0"
3

n = 2

2

Z
2

= 3.920xl0"
3

n = 3

'4

low:

Z
2

= 7.040xl0"
3

n = 4

Step 2

In this step, the bending frequency factor, co
f

, , defined in equation (19)

is computed. Thus,
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[
2

fb =

4pEI

(108x10 ) X13.89
/ p- rad/sec.
V 4x0.000734x29x10 x20. 53

~ 304.44 rad/sec.

The circular natural frequencies of the first four modes of vibration are

now computed using equation (18). Thus,

o)
]

= co
fb

- Z
]

= 304.44 x /0. 464x1
0" 3

rad/sec.

- 6.5578 rad/sec.

and similarly,

cop = 12.4783 rad/sec.

oo
3

= 19.0608 rad/sec.

co„ = 25.5438 rad/sec.

When these values are compared with the exact values (Appendix B) in the

following Table, one can see that the largest error in the computation of

frequencies using graphs is about 4%, and that this error corresponds to the

fundamental mode. For higher modes, the error is often much less (e.g., for

third mode, the error is 0.5%).

Table 4. Comparison of Natural Frequencies

Natural Frequency (rad/sec.)

Mode No. Exact Solution From Graph Error %

1 6.3180 6.5578 3.8

2 12.6380 12.4783 1.3

3 18.9621 19.0608 0.5

4 25.2917 25.5438 1.0
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It should be noted that for the number of even modes the error percentage

is usually slightly higher than it is for the odd number of modes. For

all practical purposes, the computation of frequencies by means of graphs

gives fairly accurate estimates.

Example 2

This example will demonstrate the use of nondimensional maximum deflec-

tion and maximum curvature curves as developed in Chapter 4. The cable is the

same as in Example 1. In addition to the parameters provided in Example 1, the

following are assumed.

P
a

= 1.123xl0"
7 1b

"^
ec

(1.201xl0"
3
gm/cm

3
)

in

6 = 0.08

St = 0.2

C
L
= 1.2

Step 1

In this step, we shall compute the critical wind velocities that will put

the cable in resonance in various modes. Thus, using equation (23), we find,

for the first mode:

V =
aJ

l

d
= 6.5578x6 ~~ 30.17 in. /sec.

cr
&r'St 2nx0.2

= 1.71 mph [2.74 km/hr]

Similarly, for the second, third, and fourth modes, the critical wind velocities

for resonance are:

V = 3.38 mph [5.41 km/hr] for n = 2

= 5.17 mph [8.27 km/hr] n = 3

= 6.93 mph [11.09 km/hr] n = 4

The result indicates that the critical wind velocities corresponding to

the fundamental and lower mode resonance are relatively small. While the pre-

vailing wind velocity at a particular site of "cabled" structure may conceivably

be as low as 7 mph [11.2 km/hr], it is equally probable that higher wind

velocities may prevail. In this case, higher modes will be in resonance. For

this reason, we have decided to compute a few more higher modes.
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For example, consider the 15th, 29th, and 43rd modes. The frequencies of

these modes as computed according to the steps given in Example 1 are:

u)
15

= 96.2724 rad/sec.

w
2g

- 190.1227 rad/sec.

co
43

= 296.7314 rad/sec.

The corresponding values of critical wind velocity are:

V
cr

= 26.12 mph [41.79 km/hr] for n = 15

= 51.58 mph [82.52 km/hr] n = 29

= 80.50 mph [128.80 km/hr] n = 43

It seems that 26 mph [41.6 km/hr] wind velocity is likely to occur in a

particular site and therefore, the cable in this example is likely to resonate

in 15th mode. For this case, it will be necessary to determine the deflection

and bending stress corresponding to this mode.

Step 2

In this step, we will compute the amplitude of forcing function using

equation ( 1 ) . Thus,

F = JrPdC.V 2

o 2 a L cr

= 1 (1.123xl0"
7
)x6xl.2V

2

2 cr

= 4.0428xl0"
7
V
2

cr

This is, of course, the magnitude of forcing function per unit length of the

cable and hence, has the unit of lb/ft (N/m). Knowing the V for different

modes, it is now possible to find F which would cause the cable to vibrate

in particular modes. We now compute F for the modes shown above.

F = 4.0428xl0"
7

V
2

o cr

= 0.00037 lb/in. = 0.00442 lb/ft [0.0648 N/m]

for n = 1

and similarly,

F = 0.01717 lb/ft [0.2505 N/m] for n = 2
o

= 0.04017 lb/ft [0.5862 N/m] n = 3

= 0.07217 lb/ft [1.0532 N/m] n = 4

= 1.02526 lb/ft [14.9618 N/m] n = 15
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= 3.99808 lb/ ft [58.3447 N/m] n = 29

= 9.73824 lb/ft [142.1119 N/m] n = 43

If the resonance mode of a cable, (for instance, the 15th mode) in a

particular structure and at a particular site is known, the above computation

will give the magnitude of the forcing function that needs to be used in the

calculation of the maximum deflection and bending stress. Alternatively, if

the nominal wind velocity at a particular site is known, the magnitude of the

forcing function can be computed by substituting for V in the expression for

F , the value of the wind velocity. In a similar manner, using the Strouhal

relation and the value of nominal wind velocity, the resonant frequency, and

hence, the mode number can be determined. This information is then utilized

to evaluate the maximum deflection and bending stress. The methods of computa-

tion are shown in Steps 3 and 4 below.

Step 3

In this step, the maximum nondimensional deflection will be computed by

using graphs in Figures 1.7 and 18. For example, consider the first mode for
2 -3

which Z = 0.464x10 . We also know that the nondimensional force P is 92,895.

Corresponding to these two values, the maximum nondimensional deflection can

be read from Figure 17, and the value is approximately 0.569. Note that in

Figure 17, there are only two graphs which correspond to P = 66,000 and

P = 120,000. For reasons of clarity, the deflection curves for all other

intermediate values of P have not been drawn. In computing the maximum non-

dimensional deflection, Y , the interpolation method has been used.

In order to verify the accuracy of the graphical method, the maximum non-

dimensional deflections are calculated using exact analysis and using a computer

program developed to perform model superposition analysis. The output from the

computer program is shown in Appendix B. One can note that, for the first

mode resonance, Y is equal to 0.607, and hence the error is less than 7 per-

cent.

Knowing Y , the maximum deflection may be calculated by using equation

(27). Thus,
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V
"max

p Vd
2
L

a Y
n

Jo /p"6A

1.123xl0~
7
x(6)

2
x(506xl2) VY

(/l 08x1 (T)(/0. 000734) (0.08) (13. 891 7)

= 2.48x1
0" 3

VYn

This means for the first mode resonance that:

ymax
= 2 - 48xl0

~
3x30 - 17x0 - 56 9 in.

= 0.0426 in. (0.1082 cm)

The completion has been repeated for other modes of vibration with results

summarized in the following Table.

Table 5. Computation of Deflection

Mode No. Y v (in. [cm])
n "max v L Jy

1 0.569 0.0426 [0.1082]
2 0.382 0.0563 [0.1431]
3 0.212 0.0478 [0.1215]
4 0.164 0.0496 [0.1260]

15 0.042 0.0479 [0.1216]
29 0.021 0.0478 [0.1215]

Step 4

We are now going to compute the bending stress. For this, we shall

determine first the nondimensional curvature using Figures 19 through 2l.

2 -3
Consider again the first mode for which Z = 0.464x10 . Corresponding to

this value and the value of P = 92,000, the nondimensional curvature x-, , can

be obtained from the graphs in Figure 20. The value is approximately equal

to 6.306xl0"
3

.

The value of y" may now be calculated using equation (32). Thus,
llld X
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v X

P, d
2
/7JL

J max /p 6 EI n
A
n

1.123xlO"
7
x(6)

2
x/oSxlO

3
x (506x12)

/O. 000734 x(0.08) x (29xl0
6
)x(20 5329)

= 6.25 x 10" 6
V x
n
A
n

This means for the first mode resonance that
r o -1

y"max
= 6 - 2 5xl

0" D
x30. 17x6. 306x1

0" J
(in. )

* 1.1892xl0"
6

in."
1

(3.0206xl0"
6
cm

_1
'

The bending stress is now calculated using the standard strength of materials

formulation, namely:

(okUy = E c y"
v D'max z

-> max

For a 10-layer cable, there are 19 wires along any diametrical axis. Hence,

the maximum fiber distance, c , may be considered as 19 times the radius of a

wire. Therefore, in this case, c becomes equal to 2.375 in. (6.033 cm).

Finally, the maximum bending stress becomes equal to:

b' max

= 81.906 psi (564.742 MPa)

(a.) = 29xl0
6

x 2.375 x 1.1892 x 10" 6
psix n ma v "

The above computation has been repeated in a manner similar to the previous

steps for the 2nd, 3rd, 4th, 15th, and 29th modes. The results obtained are

summarized in the Table 6 below. It should be noted that these results, when

compared with the exact values obtained from computer printout, indicate the

accuracy of the graphical procedure developed in this report.
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Table 6. Computation of Bending Stress

Mode No. \ y" (in." [cm~ ])J max L J (a.) (ksi [MPav
b max L

1 6.306xl0'
3

1.1892xl0"
6
[3.0206xl0"

6
] 0.0819 [0.5647]

2 6.34xl0"
3

2.357xl0"
6
[5.987xl0"

6
] 0.1624 [1.1194]

3 6.35xl0"
3

3.611xl0"
6
[9.172xl0"

6
] 0.2487 [1.7149]

4 6.355xl0"
3

4.844xl0"
6
[12.305xl0"

6
] 0.3336 [2.3006]

15 6.5xl0"
3

18.676xl0"
6
[47.437xl0"

6
] 1.2863 [8.8690]

29 6.870xl0"
3

38.979xl0"
6
[99.0xl0"

6
] 2.685 [18.511]
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CHAPTER 6

FATIGUE LIFE ANALYSIS

6.1 An Overview

The general engineering practice for design, specifications and fabrica-

tion of any structure is based on correlations of the latter with service

experience. Normally, service experience leads to identifying weak links in

a structure, and reliability is obtained by improving these weak links. In

the case of a cable-stayed bridge, lack of the above information at this stage

imposes a severe limitation on a comprehensive fatigue life analysis. However,

within the framework of fracture mechanics methodology, a preliminary approach

to the problem may well be conceived. This preliminary approach will be

described in detail in this chapter.

6.2 Fracture Mechanics Methodology

Fracture mechanics is basically a study of the fracture or discontinuity

in terms of such commonly used engineering parameters as applied stress,

specimen and crack geometry, and material prooerties. In linear elastic fracture

mechanics (LEFM), this is equivalent to describing the stress field in the

vicinity of a crack tip or a surface of discontinuity in terms of the above

parameters. The magnitude of this stress field is higher than one obtained

in the absence of any discontinuity. This relative increase in magnitude is

described by a term K. called the stress-intensity factor. The subject of

LEFM deals with the relationship between K
T

, nominal stress a, crack or flaw

size a, and material properties, such as M. In functional form, the relation-

ship can be written as:

Kj = f(o, a, M) (34)

One of the principles of fracture mechanics is that unstable fracture occurs

when K
T

reaches a critical value K
jr

. One can note from the above relationship

that for a given a and a given set of material properties, the change in a is

directly associated with a change in Kj. Thus, if the value of the crack size

corresponding to K
T
„ is denoted by a , one can write:

aC = fl K K IC , M)
(35)
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The parameter a represents the terminal conditions in the life of a structural

component and the parameter K
T
~ represents the inherent ability of a material

to resist progressive tensile crack extension. For this reason K
Jr

is more

commonly called the fracture toughness of the material.

At the outset, the fatigue life analysis of a structural component is

seemingly unrelated to the field of fracture mechanics, since it deals with

the life of the component under repeated cyclic loading in terms of the total

number of load cycles elapsed. Moreover, the component is believed to be free

of any discontinuity or crack, at least macroscopically and, therefore, the

concept of stress concentration seems to lose its meaning. On the other hand,

more often than not, a structural component contains initial defects. This

is largely the result of manufacturing processes. Even if these defects are

microscopic in nature, at one stage of repeated loading they give rise to

localized stress concentration which causes fatigue crack initiation. While

these cracks are of subcritical dimensions, they nevertheless act as sources

of discontinuity, thereby raising the values of K
T

the terminal condition

a is reached. This, then, is the stage of fatigue crack propagation prior

to the stage of macroscopic failure associated with the unstable crack growth.

The above description serves as a link between the fatigue life analysis

of a structural component and the conventional LEFM methodology. More precisely,

it indicates how the fatigue behavior of a structural component can be described

in terms of fracture mechanics parameters K
T

(Kjq), a , a, the material properties

M, and the number of load cycles. A complete description of the fatigue life of

a structural component involves three distinct stages. These are:

Fatigue crack initiation

Fatigue crack propagation

Crack instability or final fracture

These stages will be dealt with in more detail in the specific case of bridge

cables.

6.3 Fatigue Crack Initiation

A complete knowledge of fatigue crack initiation in bridge cables requires

the understanding of the basic mechanism of fatigue in high strength materials.
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Very little work has been done in this area partly because it is extremely

difficult to observe microstructural chanqes caused by the fatinue orocess

in such materials. With this limitation in mind, we shall attempt to describe

the microscopic aspects of fatigue crack nucleation in bridge cables.

6.3.1 Microstructural Aspects

The chemical composition and mechanical properties of bridge cable materials

presently under investigation indicates that the material is a multi-

phase system and has martensitic structure. During constant strain-amplitude

cycling of such structures, the stress range generally decreases within the

first 20% of its life as shown schematically in Figure 22, whereupon it remains

relatively constant until the final fracture of component occurs.

The hystersis loop in Figure 22 represents the case of strain-softening,

a phenomenon which takes place only if a /a < 1.2 where a is the ultimatef f J u y - u

tensile strength and o , the 0.2% offset yield strength. This is indeed the

case of the cable material presently under investigation. The implication

of strain-softening high strength materials is that they produce dislocation

slips which are very small and highly localized and hence, within the nominal

elastic range. Therefore, large stress concentration in these materials

arises from the structural imperfection in the form of inclusions or voids

induced by the manufacturing technology.

During the load application and stress reversals, the microvoids tend to

coalesce, thereby forming the site of crack nucleation. In high strength

materials, the void coalescence, rather than cleavage, is the microscopic

phenomenon contributing to crack initiation.

Considering the case of bridge cables, it can be noted that the crack

initiation in a single, polished and unnotched wire is likely to be caused

by the above void coalescence mechanism. A cable, on the other hand, is

composed of several single wires tied together in parallel or in some

helical combination. During external cyclic loading of the cable by wind

or other forces, individual wires undergo different amounts of bending which

cause contact surface and hence, contact stress to be generated between the

wires. If repeated contact due to cyclic loading occurs, it will produce

mechanical notches in an otherwise unnotched wire. It is, therefore, important
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to note the following:

1. Crack initiation in a single, unnotched and polished wire is

brought about by the void coalescence mechanism.

2. Crack initiation in an unnotched and polished wire within a wire
bundle (cable) is brought about by a combination of void coalescence
and mechanical notching due to contacts between the wires.

3. Crack initiates faster in initially notched specimens.

6.3.2 Engineering Analysis

The brief description of microstructural aspects of the fatigue crack

nucleation sheds some light in understanding the basic fatigue mechanism in

bridge cables. It also leads to two important observations, namely:

1. The crack initiation mechanism in bridge cables or wires is

correlated to strain-softening or strain-hardening parameter
of the cable material, whichever the case may be.

2. The fatigue strength of a wire, which is a measure of its
resistivity to crack growth, depends on the surface texture
of the wire as indicated in the schematic shown in Figure 23.

Based on these observations, we will now develop a framework for the

analytical study of fatigue crack initiation in bridge cables. Thus consider

a single wire subjected to cyclic loading. The conventional procedure

for describing the fatigue behavior of the wire is to generate a design

fatigue curve (S-N curve) based on the experimental data on nominal stress or

stress range and the number of cycles elapsed before failure. The schematic

of a S-N curve is shown in Figure 24. Note that the total S-N curve indicated

by a solid line is an assymptotic combination of the crack initiation curve

and crack propagation curve both indicated by broken lines. The shape of the

crack initiation curve suggests that an empirical relationship of the following

form exists between the number of cycles to crack initiation, N., and the nominal

stress range, Aa.

N. = C^Aar
(36)

where C, and y are two constants which depend, in general, on the material
(3 7)

properties M stated earlier and on the strain hardening exponent, n. Yokobori

has found a similar relationship for the crack initiation in aluminum. When
(38)

the crack initiation data (See Figure 25) of Barson and McNicol f° r HY-1 30

steel were curved-fitted to the above expression, we obtained:
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C = 3.06 x 10
7

, y = 3.3

It should be recalled that the objective of the empirical formalism is

to obtain expressions for the constants C, and T in terms of measurable

mechanical properties such as ultimate tensile strength, yield strength, etc.,

as well as in terms of a strain hardening exponent. However, this requires

a large set of statistical data from identical experiments with specimens

having the same geometry but a varying degree of mechanical properties. This

is not available in current literature and should, therefore, constitute the

forefront of further research.

The above analysis of crack initiation does not reflect directly the effect

of notches. From an engineering standpoint, it is of considerable interest to

study this latter case. This is conventionally done by establishing a relation-

ship between the number of cycles to crack initiation and the quantity AK,//p~

where the term K
y

is explained before and p is the notch radius. The usual

experiment involves testing specimen with different notch radius. In the case

of a wire of .25 in. (6 mm) diameter, such experiment is not likely to produce

reliable results. However, it is analytically possible to obtain a threshold

value of AK //p" denoted by (AK
T
//p) , below which crack will not initiate. For

this, the following relationship is used. (See also Figure 26.)

= 10 /F
y

(37)

^/p~/th

where a is the yield strength. Thus, for the wire material (a = 204 ksi

[1407 MPa]), the threshold value becomes 142.83 ksi (949 MPa). On the other hand, the

threshold value of AK
T
//p"is related to the maximum applied stress. The exact

functional relationship between these two quantities depends on the nature of

crack, i.e., whether the crack is circumferential, axial, single-edged, double-

edged, elliptical or otherwise. This requires extensive analytical investigation.

At present, we assume that the maximum elastic stress at the root of the notch,

a , is the one due to an elliptical crack and is given by:
max r

2K

a
max /

—

I— (38)

66



t>

•4->

c
<v

<1)

>-

207 414

MPa

690 1379

400

300

200

STRESS RATIO

O 0.1

D 0.5

A -1.0

100

80

60 f-

50

40

30

HY-130

J I I I I I

2069

1379

690

414

207

20 30 40 60 60 100 200

K total
, ksi

Figure 26. Relationship Between Yield Strength and

(39)(k/ for High Strength Steels (Roberts, et al .

;

)
v

I /p)th 3 3

67



This means that the maximum stress fluctuation corresponding to the threshold

value of AKj/Zp'is 161.17 ksi (1111 MPa). It represents the case of p -* «>

or in other words, an unnotched specimen. There is no data to substantiate
(37)

the value; however, two results of Barsom and McNicol v
' are worth noting

in this regard. First, the value of (AKj/Zp)
h

(142.83 ksi) [949 MPa]) is

close to the one obtained for ASTM 4340 steel (a =212 ksi [1462 MPa]) shown

in Figure 27. Second, the value of a (161.17 ksi [1111 MPa]) is consistent
max

with the one experimentally obtained for HY-130 steel.

The above analysis gives us some information on the fatigue crack initia-

tion life of the wire. More specifically, the analysis determines the fatigue

limit or the endurance limit of the wire material. The number of cycles corres-

ponding to this endurance limit is primarily the fatigue initiation life. For

higher values of applied stress range, the number of cycles to crack initiation

rapidly decreases. Figure 28 shows schematically the fatiuge limit of polished,

notched and degreased single wires of the type that is frequently used in

cable-stayed bridge construction. Assuming a stress threshold value of 160

ksi (1103 MPa) for the wire material under investigation, and assuming a value

of y - 3.3, an empirical fatigue crack initiation curve may be obtained

in a manner similar to the ones shown in Figure 27.

6.3.3 General Discussion

The analysis presented in the preceding section demonstrates that the fatigue

initiation life of a wire is correlated to its yield strength and strain

hardening exponent. In addition, the initiation life of a notched wire depends

on the notch geometry. Therefore, a complete understanding of crack initiation

in a wire remains an unresolved issue. Limited experimental efforts have

previously been directed in this area, most notably by Reemsnyder ~' who

tested single wires for fatigue life in a rotating strut machine. The results

of his experiments are shown in Figures 29 and 30. Since the yield strengths

of the wire materials in his experiments are of the same order of magnitude,

the results serve to verify the analytical framework discussed in orevious
( 43

v

sections. More recently, Fisher and Viest ' have performed experiments

with single wires (as well as strands made from such wires) which have

different yield strengths and tensile properties. However, their results

(See Figure 31) are too scattered to form any homogeneous statistical groups.
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ô

«N

-a
cu
-sz
to

•i

—

i

—

o
a.

4-
o

CU

=3
+->

en
J c
fO CU

+->

o t/0

+->
CU

c/>

CU
CD

u
>>o

+->

Ll_

4-
o

en
c

CU
.a
E

o
IS)

=3
1/1

u
•1

—

+->

fO

E
CU
^z
u
oo

#

CO
C\J

CU
S-

CU

(J
cu
Q.

cu

CU
to
ro

CU
s_
en
cuO
TD

fO

en

o
ro CsJ

O
CM .—

I

o

o
1—

I

o

70



•I

—

o
. E
c fO
•1— •i

—

• 1 "D
F CO
fO ^j- •

•i

—

i—

i

d
"O o 1

• <£>

c #* CTl
-1

—

"O .—

1

1 OJ •

ID 4-> O
*t fD
1"H O **

• ' U -oo 1 cu

E N
r> 3 •i

—

+-> C C
-C •f— 03
CD E >

•
i

—

3 i

—

S_ i

—

<a
CQ < o

—J O

CO

O)
s-
f™3
CL

P-"

a
c „ s

•i

—

s
oo

CNJ
cu

1
«tf-

s-
=3

00
4-> cu

T3
fO 00

CU
I—

>>
Li-

00
Ci E

CO

cu
13
CD

cu
cu

CD
"' ^ .

•*->

U <T3

U-
cu

C_>
-M cu

M- 13 oo
O

+-> 3
o

cu p—
JD CD D_
E
13

c
"OZ

03
+->

O

cu
>
o
s-
Q.
E

#
t—t

cr>
C\J

cu
S-

UD LO «* p-> CNJ <—

1

CNJ

O O o o o o

en

71



o o o o
in ro c\j

CO

KD

O
CO

'vO

OvJ

<D

c
00

E
O)
cu
cc

oo
cu

a
C_)

cu
4-

_1

cu
=3
en

CO

- <=3"

s
o

T3
CU
>
o
S-
Q.

O
oo

00

CU

Z3
en

+->

O
oo

cu
s-

cn

KO *3"8 ^- oo
.

C\J

ooO « •> "

o oo o o o
O X

CXJ

n
S .SS3cJlS 31ISN31

xeuJ
s SS3cUS WnWIXVW

72



ejl^j 'a6uey ssaais

o
CT-.

<X>

CV1
ID
in

'
1

i
1

i

_ t :

- 1 U
i

-

- i

- *

/

•

/

-
/

" -

- /
•

-

/
~

•
1

/ •

- ' •

V
o

j\
1 •

•

•

•

•

128.8

ksi

\j

•
ii

c

E
go

•
i 1

i
i

i

o o o o o o o —
00 10 t o 00 10 V

en

CO

OO
, s

CD
<^r

• i— «*
3 —

-

CD
S-

cn OO

3 CD

Ll_

O

00
00

CD
5-
+->

oo

>

ft!

00

CD

CD

Q_

s-
CD

i

—

4- 00

O u_
C_J

OO

4-
O
5-

CD

4->

OO

CD
rv

S-
CD
-M
+->

-Q o
E
Z3

+->

OO

CD

CO

CD

CD
S-

ls>| 'a6uey ssaj^s

73



(38) (44)
In yet another direction, Barsom and McNicol ;

, Clark v
, and

Clausing * '
t and others have attempted to correlate various mechanical

properties with the crack initiation life. A detailed account of this may
( "3M

be found in Rolfe and Barsom

In summary, it may be pointed out that the analytical framework of the

crack initiation in a wire is by no means complete. Furthermore, preliminary

conclusions reached at this stage still require substantiation by experimental

work. It can be safely assumed, however, that the fatigue limit of a single

unnotched and polished wire is fairly high and therefore, the crack initiation,

under commonly occurring wind loading during a reasonable span of service life,

should not be a grave concern. This statement, of course, requires some

qualification when one considers the taut ends of a cable or a wire. It may

be evident from the dynamic analysis presented in previous chapters that

bending stresses are usually much higher at the ends. As previously discussed,

higher stresses considerably reduce the initiation life.

6.4 Fatigue Crack Propagation

Crack initiation life dominates the total fatigue life in the high strength

material of which bridge cables and wires are made. Hence, from the service

viewpoint, the fatigue problem is practically eliminated if the cables are so

designed that commonly occurring wind loading will not produce high bending

stresses. However, there is still some probability, small as it may be, that

some wires in the cable will contain preexisting cracks, surface discontinuity

or voids. In this case it is important to determine the crack propagation life.

It is a conventional practice to divide the fatigue crack propagation

behavior into three regions (see Figure 32). Region I in the

figure corresponds to non-propagating fatigue cracks. Rolfe and

Barsom' s ^ ' experimental results on non-propagating fatigue cracks show that

the threshold stress-intensity factor below which a crack will not propagate is

given by:

AK

.

h
= 6.4 (1-0.85 R) for R > +0.1

= 5.5 ksi/in. for R < +0.1 (39)
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For the present case, the value of R is always greater or equal to 0.1 for all

possible design stresses and all possible wind loadings. In fact for large

value of applied tension, such as 110 ksi (758 MPa), and for low bending

stress, such as 10 ksi (59 MPa), the value of R will be as high as 0.8 and

consequently, the value of AK . will be very low. Hence, for all practical

purposes, once a crack is initiated in a wire it will propagate.

Let us now consider Region III which corresponds to accelerating fatigue

crack or the unstable crack growth. The usual LEFM description of such

phenomenon is given in terms of crack tip opening displacement (CTOD), 6 .

The latter is related to a threshold value of stress intensity factor K.,

and the elastic properties in the following manner:

V 4r*

—

<*°>

y

In fact, it is observed that the accelerating fatigue crack propagates at a

_3
constant value of 6 equal to 1.6 x 10 in. (0.04 mm). For the bridge wire

(E = 29 x 10
3

ksi, [200 GPa], a, = 204 ksi [140.7 MPa]) this gives K.. = 97.29
y tn

ksi /Tn. [107 MPai/m] approximately. It will be assumed that the fracture

toughness of wire, K
Tf

or K
Tp , falls in the range of 80 ksi /TrT. (88 MPavfii).

Therefore, we assume that for most cases of interest with the fatigue design

of bridge cables, K. u >K T ^. This means we need not be concerned about the
tn i ^

evaluation of accelerating fatigue crack propagation life which will indeed

be very small

.

The above analysis indicates that the fatigue crack propagation life of a

wire, while relatively small in comparison to the initiation life, is limited

mainly to steady-state crack propagation Region II. We will describe the

latter in terms of some rate equations discussed next.

6.4.1 Steady-State Crack Propagation

In its formulation, a general law of fatigue crack propagation should

include, as a minimum, the following factors:

76



1. Geometry of specimen and crack.

2. Nature of cyclic loading (constant and variable amplitude).

3. Material properties.

4. Growth rate.

In addition, environmental factors such as temperature, humidity, environmental

corrosion, etc. may affect the propagation rate. Therefore, ideally, they

should be considered in a general propagation law. The existing laws of crack

propagation are basically two types:

1. Laws derived from theoretical analysis of strain hardening,
fatigue damage, CTOD, interference and other models.

2. Semi -empirical laws based on statistical analysis of experimental
data.

From a practical engineering standpoint, the second type seems to be more

promising. Therefore, our discussion will concentrate only on this type.

The semi -empirical laws can generally be written as:

m = C
2

(AK);J (41)

where a is the crack size, and C
?
and u are two parameters which depend, among

other things, on material properties. Determination of the crack propagation

life of a wire by the above formula involves knowledge of the following

quantities:

1

.

Values of C and y

2. Values of critical crack length a and fracture toughness K.p or K.p.

3. Value of initial crack length

Barsom ^ has tested various high-yield-strength (a > 80 k s i ) [55 MPa]

martensitTc steels for fatigue crack propagation. The results of these experiments
show that (see also Figure 33):

u = 2.25 and 0.27 x 10
8

< C < 0.66 x 10" 8

Since C and u are assumed to depend only on the material properties, and since

it has been established by Bucci et al . * '
, Barsom *

, Imhof and Barsom ,

and Parry et al .
^"

' that the growth equation:
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ft
- 0.66 x 10"8 (AK)

2 - 25 («)

is valid for steels having yield strength ranging from 80 to 300 ksi, (552 to

2068 MPa), we shall consider the above form as representative for fatigue crack

propagation in cold-drawn wires.

The determination of fracture toughness, K T „ or K Tn , and hence the
IC ID

cal crack size, a , reqi
c

the stress intensity factor.

critical crack size, a , requires, at this point, some detailed analysis of

6.4.2 Fracture Toughness and Critical Crack Size

It is stated earlier that the fracture toughness of a material represents

its inherent ability to resist progressive crack extension. In the case of

tensile cracking, the parameter is denoted by K
Tr

and in the case of bending,

by Km. In either case:

ac = f(Kic or K ID , amax , g) (43)

where g is a function of crack geometry. The above formula determines the

critical crack lenqth, a . if KTr or K Tn , cr . and q are known,
c i \j i ij max

Fracture toughness K
Tr

or K
Tn

may be theoretically calculated using

their relationships with the mechanical properties of the structural component.

One such relationship due to Sailor ^ ' is as follows:

^- = a CHS e
£p

(«)
E y s o

where C = constant factor = 1.3

H = strain hardening correction term; typically between 1.2 and 1.5

6 = mean free ferrite path

e = plastic strain at the crack tip (= 0.8 for plane-strain fracture

strain)

Although the above equation is strictly valid for ferrite structure, it provides

a reasonable estimate of K
Tr

for martensitic steel of which the cable is made.

Sailor's theoretical calculation shows that fracture toughness of SAE 4340 steel

(steel having a comparable strength value to that of ASTM A586-68 material) is in the

range of 70 ksi /m. (77 MPa /n) to 85 ksi /TnT (93 MPa /m ) . On the other hand,

the measured value of K
IC

^ 51) (see Figure 34) falls within a much wider range
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between 60 ksi /in. (66 MPa/m) to 80 ksi /in. (88 MPA/m) . For the present

analysis, we shall assume a set of values of K
jr , namely, 60 ksi /in.

(66 MPa/m), 80 ksi /Tn. (88 MPavffi), and 100 ksi /Tn. (lin MPa/m). We

consider that, in the absence of further experimental and analytical

evidence, this will provide sufficient useful information about the range

of crack propagation life in bridge cables.

Fracture toughness can also be determined experimentally. At present,

the standard ASTM method for measuring K
Tr , called the K

Tr
test method,

requires a certain specification of the test specimen dimensions. These

specifications are not satisfied by a 0.250 in. (6 mm) diameter wire having

yield strength of 204 ksi (1407 MPa). Consequently, this is another area which

needs further exploration. In any event, we conclude at present that from

the assumed or computed values of Kjq, the critical crack size can be determined

using the functional relation in equation (43).

In fracture mechanics methodology, several explicit relationships between

the stress intensity factor and crack length are derived by various methods.

We recall that a knowledge of the stress intensity factor is required to deter-

mine the crack propagation life of a wire analytically. Accordingly, we shall

consider here some of these relationships which seem to closely represent

the situation of crack propagation in a wire.

Let us examine the case of a circumferential crack in a cylindrical shell

(52)
Figure 3b). Folias v

' has obtained an a

sion for the stress intensity factor K
T

as follows

(52)
(see Figure 35). Folias has obtained an approximate analytical expres-

v /rii ^ 2
"L f (1 + v 2

)

1"
2

A
2

/a~ IK
I
-^(1+ U~\ + a

b { /3 (3 + v) J

{Wv)
+

\WT^V U + ln^)} + 0(A
4
lnX) (49;

where A is given by

A = 12 (1 - v
2

)

h (a/R)(R/h)^ (50)

For a solid cylinder approximation, h/R = 1 and substituting v = 0.3 for steel,

we get:

A = 1.82 (1) (51)

The stress intensity factor in this case may be approximated by the following

expression:

Kj = a(l + 0.163 A
2

) ST (52)
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provided the contribution of the term containing the bending stress is

negligible. Folias found that this type of approximation results in

about a 6% error in K
T

for all values of A. If, in the above case, the

crack is axial, (see Figure 36a) the stress intensity factor may be

approximated by:

Kj = cj(1 + 0.815 A
2

) /a~ (53)

Finally, for a circumferential crack with arbitrary orientation (see Figure

36b), the approximate stress intensity factor is:

Kj = o(l + 0.163 A
2
)(5 cos

2
+ sin

2
e) SiT (54)

(53)
Hilton and Sih v

' have calculated the stress intensity factor for a

circumferential crack in a solid cylinder by the finite element method and

found the following expression:

K
T

. (m\^ (55)
1 a

where K is the normalized stress intensity factor. They found that for

2R/a = 1.25, K = 0.250.

We have developed an approximate expression for the stress intensity

factor using the result of single-edge notch in a plate, i.e.

Kj = o7fraf(Ac /B) (56)

where the ratio A/B in our case corresponds to that of the area of cracking

to that of the semi -circle. From Figure 37 the area of cracking is given by:

K-4- -(R-a) /2aR - a
2

- R
2

tan
A ($2 J\ (57)

L V2aR - a/
"The values of f(A /B) for different A /B are assumed to be those for the

single-edge notched specimen, and are given in Table 7.

Using the above expression for the stress intensity factors, the critical

crack size in a 0.250 in. (6 mm) diameter wire has been computed for different

values of nominal stress and fracture toughness. The relationship between

maximum nominal stress and critical crack size is shown in Figure 38.
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Figure 37. Approximate Representation of

Cracking in a Wire
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Table 7. Correction Factors for a Single-Edge-Notched Plate

a/b f(a/b)

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.15

1.20

1.29

1.37

1.51

1.68

1.89

2.14

2.46

2.86
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Figure 38. Relationship Between Maximum Nominal

Stress and Critical Crack Size for Different
Toughness Values.
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6.4.3 Propagation Life

It was stated previously that the crack propagation in a wire can be

approximated by the growth equation (42). The propagation life is obtained

by direct integration of the growth equation. Thus, if N denoted the

propagation life:

N = (
C -^ - (58)

p a 0.66 x 10"8 (AK)
2 - 25

o

The term AK is a function of Aa and a and, therefore, for a given value of
max

Aa , the above integral can be numerically evaluated. Figures 39 to 44
max 3 J

show the crack propagation life as a function of stress fluctuation Aa for

different values or initial and critical crack sizes. In the absence of

more specific information, the initial crack size, a , has been arbitrarily

selected from a range of 0.01 in. (0.25 mm) to 0.05 in. (1.25 mm).

6.5 Total Fatigue Life of Wire and Cable

As mentioned earlier, the total fatigue life of a structural component

is composed of two quantities namely, the fatigue crack initiation life and

the fatigue crack propagation life. In the particular case of bridge

cables, it was also stated that the initiation governs most of the total

fatigue life. From the knowledge of crack initiation and crack propagation

in a wire, as discussed in the preceding sections, an empirical S-N curve

may be drawn. A set of such curves for different propagation lives (Figures 39

to 44) is shown in Figure 45. It can be seen that the S-N curves are \/ery

close to each other indiacting that the difference in propagation lives has

little significance on the total fatigue life of a wire.

It is now important to comment on the analytical basis for fatigue life

predictions. We have noted that the calculation of fatigue life by semi -empirical

methods involves some form of curve-fitting through statistical data. Because

of our limited knowledge of the parameters which affect fatigue life such as

the fracture toughness, exponent of fatigue equation, load spectrum, etc.,

the statistical data may be widely scattered. In this case the prediction of

fatigue life by an empirical law may produce unrealistic results. What is

needed, therefore, is a statistical theory of fatigue behavior. According to
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this theory, the fatigue life of a wire is described in terms of a probability

distirbution involving the ultimate strength of the wire material and the

applied nominal stress. This type of analysis has its beginning in the

poineering work of Weibull( 54 ). Much of the later development on the

statistical aspects of brittle fracture was carried out along this line

by Fretidenthal( 55 ) and on the statistical aspects of fatigue by Freudenthal

and Gumbel( 56 ). More recently, Andra and Saul( 57
) proposed a statistical

theory of fatigue of parallel wire cables based on the assumption that the

wire failure is distributed binomially.

Following the statistical theory, the ultimate strength of a wire is

considered to be distributed normally according to the following formula:

P(, )
—L- exp

-
(°"-- )2

(59,

where <a > is the mean ultimte strength and s is the standard deviation
u au

of the ultimate strength. Similarly, applied stress is distributed as follows:

P(o) = -! exp
-

( a ~ <0>
* (60)

/5\sn 2s
a

where <a> and s bear the similar meaning. The probability of a crack

to be initiated in a wire is then given by:

K -

~1

2

P(a > a ) = -! exp "iL^l^L
( 61 )

' u
/2^s, 2s

;X

where the new variable E, is defined by

E, = o -o
u

so that <C> = <a> - <a
u
>

and
2 2 2

s = s + s

C au a

(62)

(63)

(64)

Thus, the probability of crack initiation can be described in terms of the

interference between two distributions P(a ) and P(a) as shown in Figure 46.
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The shaded area in Figure 46 represents the probability that the

crack will initiate in a wire. For practical engineering application of the

above concept, it is useful to think in terms of a laboratory test with

several identical wire specimens. If such a test is conducted for the

determination of crack initiation in a wire and if the two distributions,

P(a) and P(a ), are known, then the shaded area in the figure will indicate

the percentage or fraction of the total number of wires in which cracks are

initiated.

It should be noted that the above probabilistic description of the

fatigue life of a wire inherently takes into account the effect of a spectrum

of load range rather than a single load range. The consideration of a

spectrum of load range is important in the study of the fatigue of bridge

wires and cables from the standpoint of wind loading. The latter varies within

a wide range corresponding to the diurnal and seasonal variations of wind

speed. Consequently, it is more appropriate to consider several load ranges

or a load spectrum and its effect on the fatigue life. A more versatile

method of doing this from the standpoint of simplicity and engineering

practicality is the use of Miner's Rule . This rule allows the determina-

tion of the cumulative fatigue damage of a component if the fatigue damage

due to individual loadings are known (see Figure 47). According to this

rule, if N-, is the fatigue life of the wire due to a load a-,, N
?

due to cu

,

and so on, then the total fatigue life N is given by:

Eo.N.
, %

N = J J (65)

ta.
J

It is interesting to note that the above derivation can be obtained as a

special case of the more general probabilistic formulation described earlier.

The fatigue life of a wire under a load spectrum ranging from 2 ksi (14 MPa)

to 40 ksi (276 MPa) is shown in Figure 48.

While the fatigue behavior and fatigue life of a wire is of fundamental

importance to engineers responsible for designing suspension cable and cable-

stayed bridges, from a maintenance standpoint it is equally important to know

the fatigue life of a cable. We note again that a cable is comprised of a

large number of individual wires tied together in some fashion. It, therefore,

appears that the fatigue life of a cable is several times larger than the life
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of a single wire. However, Figure 49 makes it evident that the contrary is

true, at least for helical cables. This striking phenomenon raises some

interesting questions. For example, is the fatigue life of a cable related

to that of a single wire? If so, how is the fatigue life of a cable

determined?

Reemsnyder^ concluded that there is little correlation between rope

and single wire fatigue tests (see Figure 49). However, his data from the

axial fatigue tests are too few to provide a good statistical fit and the

error estimate appears to be too high. Therefore, any correlation, whether

good or bad, loses its meaning. On the other hand, it is natural to consider

that if an individual wire of a cable failed by fatigue, the load in the cable

will be redistributed. If a sufficient number of individual wires have failed,

the redistributed load will be large enough to exceed the ultimate strength,

thereby rendering the cable to be structurally ineffective. This reasoning,

when applied to a 0.250 in. (6 mm) diameter 283-wires cable (Prescon parallel -wire

Group I cable for Pasco-Kennewick bridge), means that approximately 20% or

about 56 wires may be allowed to fail by fatigue before cable replacement

becomes necessary. However, this must be interpreted in terms of the number

of loading cycles. To illustrate this, we consider two examples.

Figure 50a shows the section of a helically wound cable under the action

of an external load. If the load is cyclic, repeated, and of sufficient

magnitude, it will produce high degrees of stress concentration at the

contact region giving rise to "strand nicking" as shown in Figure 50b. The

nicks act as mechanical notches which considerably reduce the initiation life

(42)
of a wire. This conjecture had been verified experimentally by Reemsnyder v

(see Figure 49). In the case of parallel wire cables, there is practically

no contact between the wires. However, if one looks at a parallel wire cable

cable in bending, it will be apparent that the adjacent surface of two

neighboring wires in a cable will have an opposite loading situation.

If the external load is sufficiently large, this will create occasional

contacts between the wires which again gives rise to stress concentration

and mechanical notches. In either case, the life of a wire is greatly

reduced. A rigorous estimate of the fatigue life of a cable requires

detailed analysis which is beyond the scope of the present effort. Neverthe-

less, this study offers a rational explanation for Reemsnyder 's(42) experimental
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results and attempts to find a correlation between the wire fatigue and cable

fatigue life.

In concluding this section, we would like to touch upon the subject of

fatigue failure of wires and cables at the socket end. In the past, this was

a growing concern among the design engineers and users of cables who found

that the socket failure in cables is more predominant. It is our understanding

that, since the invention of swaged fittings, epoxy groutings, etc., this is

no longer a case of grave concern. Our analysis shows that bending stress

remains largest at the socket ends. However, due to swaged sockets and epoxy

fillers, there is a gradual load transfer mechanism at the socket ends. Our

preliminary studies of this mechanism in terms of viscoelastic modeling show

that the magnitude of bending stresses in the latter case is about half as

much as that in the case of rigid sockets.

6.6 Testing Data of Wires and Cables

The analysis of the fatigue behavior of bridge cables and wires presented

above is very much intertwined with the experimental work on the subject.

For example, the determination of fatigue crack propagation life requires the

knowledge of fracture toughness K\q which is experimentally obtained from

fracture testing. Second, the results of fatigue experiments are used to

construct S-N curves which, in turn, are used to verify the experimental results

For the sake of completeness of fatigue analysis, it is important to discuss

the experimental work on fatigue testing of wires and cables.

Reemsnyder ' has made a series of tests on wires, strands and ropes.

In one of these experiments, the strand specimen was 0.75 in. (19 mm) diameter

1x37 wires of ultimate tensile strength 250 ksi (1724 MPa). The results of the

experiment (axial fatigue load test) showed that at. 50 ksi (345 MPa) stress range,

5
the first wire breakage occurred at 2 x 10 cycles. At a stress range of 75 ksi

(517 MPa), however, the first wire breakage occurred at 1.5 x 10 5 cycles. Other

tests that Reemsnyder performed with different structural strands (1 x 19,

1 x 37, 1 x 55, 1 x 59 wires) indicated that for the same stress range, 1 x 19

strand had the lowest fatigue life. Some experiments also showed that bright

strands had a higher fatigue life than did galvahized ones.
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Fisher and Viestv ^> tested prestressing wires and strands for fatigue

life. Wires were 0.192 in. ( 5 mm) diameter made of steel consisting of

mean ultimate strength 257.5 ksi (1775 MPa) (range between 250 and 264

ksi [1724 to 1820 MPa])and strands which were made of 0.375 in. (9.5 mm)

diameter 7 wires with mean ultimate strength 270.4 ksi (1864 MPa) (range

between 248 and 293 ksi [1710 to 2020 MPa]). The strands were tested at

different stress levels with stress fluctuation ranging between 38.4 ksi

(265 MPa) to 75.7 ksi (522 MPa) and with maximum stress between 197.3 ksi

(1360 MPa) to 210.9 ksi (1454 MPa). The results showed that some strands

did not fail after as much as 2.5 x 10^ cycles at a stress fulctuation

of 28.4 ksi (196 MPa).. However, at the stress fluctuation of 75.7 ksi

(522 MPa), the fatigue life of the same strand was reduced to as low as

3.8 x 10^ cycles. The wires were also tested at different stress ranges.

The results showed that some wires did not fail even after 7.5 x 10^ cycles

at a stress fluctuation of 33.5 ksi (231 MPa). At a higher fluctuation

of about 97.8 ksi (674 MPa), the fatigue life was sharply reduced to 10.4 x

10^ cycles. In either case, the experimental results conclusively showed

that the single wire fatigue life is longer than the fatigue life of strands.

Jevtic(59) tested fatigue behavior of 0.1 in (2.5 mm) and 0.2 in. (5 mm)

diameter cold-drawn wires at elevated temperatures and found that the rupture

strength of wires drops sharply beyond a temperature of 392 F (200 C).

The testing was done at zero-to-tension loading and Jevtic derived from the

experimental results the limits of fatigue behavior of the cold-drawn wires.

Bennett and Boga(^O) tested cold-drawn wires used for prestressed concrete

and found that crimped and indented wires have a much lower fatigue limit

than the smooth wires. The specimens used by Bennett and Boga consisted of

0.276 in. (7 mm) diameter cold-drawn wires. The specimens were tested between

an applied minimum tensile stress level (Smi
-

n ) to a maximum tensile stress

level (Smax ) chosen to be very close to the ultimate strength of the wire

(208 ksi [1434 MPa]). The minimum stress level was kept constant during a

series of tests but varied between 102.8 ksi (709 MPa) to 142 ksi (979 MPa)

during different series of tests. Bennett and Boga found out that fatigue
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life of a wire increased for larger values of minimum stress levels. The

reason for this is attributed to a smaller value of the range of fluctuating

stress.

Cullmore(61) tested the fatigue strength of high tensile steel wire

cable subjected to stress fluctuations of small amplitude and found that in

all tests, failure occurred in one of the outer helical wires. An explanation

of this phenomenon may be found in our analysis of the bending stress (Section

4.2.2) whereby we have concluded that outer wires have a wider range of stress

variations than the core wire. Cullmore also noted fretting to be a dominant

phenomenon causing the failure of a helical wire cable. His fatigue data

on the fatigue life of a wire indicated an endurance limit of 38 ksi (262

MPa) at a mean stress level of 80 ksi (552 MPa) which is double that of the

value for a cable (18.8 ksi [130 MPa]). The most important conclusion Cullmore

had drawn from his work was that there was no minimum value of the stress

fluctuation below which failure of a cable would not occur in less than ten

million cycles.

Edwards and Picard(62) carried out fatigue tests on 0.5 in. (12.7 mm)

diamater seven-wire prestressing strands. These tests were in connection

with the analysis of the fatigue behavior of prestressing strands in both

concrete and free air environments. The effect of lateral pressure simulating

the environments as well as the effect of test length on the fatigue life

were reported by the authors. In arriving at their conclusion, Edward and

Picard made a statistical regression analysis of the test data in a manner

very similar to that employed by Fisher and Viest(43).

Fleming(63) performed fatigue testing on specimens of one inch (25.4

mm) diameter, 19 wire helically wound galvanized steel strand to establish

the effect of the load variables such as load range, mean load and maximum

load upon the fatigue life. The results from the test showed that the maximum

load and mean load had very little effect upon the fatigue life. During the

experiment, it was observed that the wire breakage occurred randomly through-

out the length of the specimens and were not concentrated at any specific

location.
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Castellaw, Frank, and Campbell ( ) tested Pasco-Kennewick bridge cables

for fatigue failure under axial loading. The specimen was made of 83 - 0.25

in. (6 mm) diameter of 240 ksi (1655 MPa) ultimate strength and the cable

had an outer diameter of approximately 4 in. (10 cm). The maximum stress

level was 108 ksi (745 MPa) with a fluctuation of 24 ksi (165 MPa) and

the specimen was cyclically loaded for 2 x 10^ cycles. No fatigue failure

of wires was observed. The limited experimental results briefly described

here, and an extensive literature search by CHI engineers during the course

of the project revealed that few experimental works on the fatigue of bridge

cables exists. This is partly due to the fact that suitable fatigue experi-

ments are difficult to conceive and design in the case of a 0.250 in. (6 mm)

diameter wire. We shall discuss this issue in more detail in. the section

dealing with recommendations for future research.
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CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Discussion of Results

In the preceding chapters, we developed analytical formulations for the

dynamic response and fatigue behavior of stay cables in bridges. Based on

them, we determined the deflection and bending stresses in typical cables

in the Pasco-Kennewick bridge. The fatigue analysis was presented in

Chapter 6, and with that we have also estimated the approximate fatigue life

of wires and cables in a wind-induced vibration environment. In this section

we will review the results obtained therein.

From the numerical results of deflections and bending stresses (see

Example 2 in Chapter 5), one can notice that the deflection is nearly constant

for all wind speeds. This is in apparent contradiction to the intuitive notion

that the higher the wind velocity, the higher the excursion should be. To

provide an explanation we recall the following observations made elsewhere in

the text.

1. The resonance mode contributes primarily to the amplitude of
excursion of deflection while the net contribution of all

other modes is insignificant. This is so even though modal

superposition is considered in the numerical computation of

the deflection.

2. The analytical model of vortex excitation considered in this report
assumes that the wind force be harmonic and that its magnitude
varies quadratically with the wind velocity.

The second item indicates that the deflection is linearly dependent on

the critical wind velocity which increases with the mode number. The first

item indicates that the nondimensional deflection decreases with the mode

number. For this reason, the maximum deflection, being a function of non-

dimensional deflection and wind velocity, yields a nearly constant value for

all modes.

Despite the fact that deflections remain nearly constant, the bending

stresses are higher for higher modes. However, because of inherently low

moment of inertia of the cable far enough away from the end-anchorages, the

maximum value of bending stress is relatively low. For instance, in Example 2
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of Chapter 5, we find that the bending stress in a 506 ft (154.23 m) long,

4.75 in. (12.07 cm) diameter cable is less than 2,685 psi (18.511 MPa).

Near the end-anchorages, one can expect a much higher flexural stress.

The magnitude o.f the stress depends on the cable anchorage system and the end

suDport conditions, among others. The exact value of moment of inertia at

the end anchorage is hard to ascertain but, due to the constraint of wires

from relative movement with respect to one another, is probably many times higher

than that in the middle. Therefore, it is reasonable to expect high bending

stress at the ends of a cable. This seems to explain the intuitive notion of

earlier design engineers that the end-anchorage is the weak point of a cable.

In regards to determining natural frequencies and critical wind velocities,

results from the present analysis indicate that long flexible stay cables are

prone to resonant vibration at some wind velocities at a particular site. This

is so because, at higher modes, the natural frequencies are densely populated

and hence, increment in critical wind velocities corresponding to two consecutive

resonance modes is quite small. At many sites the wind data show that the

velocity increment may be easily exceeded by the usual fluctuation of wind speeds.

This means that, if a particular cable is designed out of resonance with respect

to a specific mode, it does not necessarily guarantee that the cable will not

vibrate in the next higher or lower mode. Fortunately, at higher modes, the

deflection is also small, and the wind-induced bending stress can be easily kent

to a reasonably low value by proper selection of cable construction and end

anchorages. It should be noted here that it is the fatigue phenomenon caused

by reversible or cyclic bending stresses that are damaging, not the high stresses,

per se .

In the analytical formulation of the fatigue behavior of wire ropes and

cables, we have made use of fracture mechanics methodologies. In other words, ,we

have attempted to describe the fatigue crack initiation and propagation in a

wire in terms of such parameters as the threshold stress value, the stress

intensity factors, and others. Certain simplifying assumptions are inherently

involved in this approach, and it is quite likely that some of these assumptions

may not be justifiable on the grounds that the fracture mechanism in a high

strength steel wire of small diameter (0.25 in. [6 mm]) is far more comDlex.

than that in a plate, beam, or shell of reasonably large dimensions. Moreover,
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the validity of the fracture mechanics approach cannot be guaranteed when one

tries to explain the fatigue behavior of a whole cable in terms of its con-

stituent wires. Nevertheless, the present approach provides some guidelines

in understanding the fatigue behavior of wires and cables.

From the analysis of fatigue initiation in a wire, we have determined the

endurance limit and the fatigue initiation life which is consistent with the

fracture mechanics methodology. The value of endurance limit for the tvpe

of steel wire used in Pasco-Kennewick and Luling bridge construction has been

found to be approximately equal to 160 ksi (1103 MPa). The wire- used in the

cables to construct these bridges has an ultimate tensile strength of 240

ksi (1655 MPa) and maximum working stress (excluding cyclic bending stress)

of 108 ksi (745 MPa). This means an unnotched, dislocation-free single wire

can sustain a bending stress up to 52 ksi (358 MPa) without exceeding its

endurance limit. In the examples provided in Chapter 5, we found that the

maximum bending stress in a cable corresponding to a wind velocity as high

as 52 mph (83 km/hr) is about 2.6 ksi (17.9 MPa). Even if we assume that the

ends of the particular cable in question is 20 times less stiff, no fatigue

crack will be initiated in an otherwise fault-free wire. Thus, according to

classical fracture mechanics, the fatigue crack in a wire, does not initiate

below 10 cycles of load applications.

It is an accepted fact that the fatigue life of a high strength steel

specimen is largely dominated by its initiation life, as may be evidenced by

the order of magnitude comparisons between fatigue initiation life and

fatigue propagation life. The fatigue crack propagation curves obtained in

Chapter 6 demonstrate that, even at lower ranges of stress fluctuations, the

crack-initiation life is at least ten times larger than the crack-propagation

life. This indicates that crack-initiation life constitutes more than 90

percent of the total fatigue life.

The computation of the fatigue propagation life of a single wire has been

based on empirical crack propagation law for high strength martensitic steel.

In a strict sense, the law has not been verified for steels having ultimate

tensile strength higher than 212 ksi (1462 MPa), nor for material which was

cold-drawn extensively. Fortunately, for high-strength wires we have just
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indicated that the propagation life is only a small fraction of the total life.

It is hoped that approximation of the fatigue propagation life will not

materially affect the total life of a wire.

Finally, in this report we have attempted to correlate the fatigue life

of a wire to a cable in terms of a simplistic approach. In this approach,

the cable failure is imminent when the effective stress in the unbroken wires

in the cable exceeds ultimate tensile strength. For Pasco-Kennewick Group I

cable (283 wires of 0.25 in. [6 mm] diameter), this means approximately

20 percent of the wires can suffer fatigue failure before cable replacement

becomes necessary. This should in no way be construed to mean that the fatigue

life of Pasco-Kennewick Group I cable is 20 times that of the fatigue life of a

constituent wire. It has already been stated that the fatigue life of a cable

should be lower than that of a wire. We have offered in Chapter 6 a substantive

explanation for this apparent paradox. Within the scope of this contract, it

has not been possible to derive a rational relationship between fatigue life of

wires and cables by simple extension of analytical formalism.

Summarizing pertinent results, we note that the CHI ASSOCIATES, INC. '

s

investigation on the analytical formulation of the fatigue behavior of highway

bridge cables under wind induced vibration, as well as the content of the report,

may be used by the designers of cable-stayed and suspension bridges in the

fol lowing manner:

1. Formulations presented in the analysis of the dynamic response
of bridge cables offer a method to compute natural frequency,
critical wind velocity, deflection and bending stress.

2. Formulations presented in the fatigue analysis of bridge wires
and cables offer some estimate of the initiation, propagation,
and total fatigue life of a wire, and provide some guidelines
for the determination of the fatigue life of a cable.

7.2 Concluding Remarks

In the foregoing chapters of this report, we have presented a simplified

analytical formulation of the fatigue behavior of bridge wires and cables under

wind-induced vibration. It is our understanding, as derived from various

discussions with the researchers and experts in the field of structural mechanics,

that such a study is the first of its kind. While the results from the study
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are not in every respect complete, it is our opinion that the study provides

some guidelines and motivation for further research on this subject. We

shall outline in Chapter 8 a few recommended research programs designed to

bring about a more complete understanding of the fatigue behavior of cables

and wires.

We note here that the scope of the present investigation, as well as the

content of the report, is basically analytical in nature. We have simplified

the analysis to the extent that, we believe, is useful to design engineers.

For example, within the framework of the assumptions made in the analysis,

our results provide bridge designers with a method by which they can compute

deflections and stresses in cables. Further, it provides bridge engineers

with an estimate of the fatigue life of wires and cables. This knowledge is

important from the standpoint of reliability and maintainability. However,

we do not wish to suggest that figures, charts and tables derived in this

report should be used without discretion. In fact, the bridge designer must

first determine if, in a particular cable design, all assumptions and criteria

used in the present analytical development can be justifiably incorporated.

In conclusion, wp state that much work, both analytical and experimental,

is still needed for a complete understanding of the subject. Only then it will

be possible to provide bridge designers with rigorous tools to carry out

fatigue designs of stay cables.
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CHAPTER 8

RECOMMENDED FUTURE RESEARCH

A more complete understanding of the fatigue behavior of bridge cables

and wires requires an extensive amount of additional research in several

areas. We shall first enumerate these research areas and then outline some

recommended research programs in each of these areas.

1. Fatigue initiation in a single wire.

2. Fatigue behavior of wire under variable amplitude and random
loading.

3. Correlation between wire fatigue and cable fatigue.

4. Fracture toughness of wire materials.

5. Environmental effects on fatigue life of wires.

6. Fatigue testing of wires and cables.

Fatigue Initiation in a Single Wire

Wires used in bridge cables are made of high strength steel having

martensitic structure. During constant amplitude cyclic loading, a wire will

undergo strain-softening, thereby producing dislocation slips. The resulting

dislocation pile-ups will form microvoid. It is believed that microvoid

coalescence is the mechanism which initiates a fatigue crack. However, from the

standpoint of design engineering and application, the above metallurgical

explanation of a possible fatigue crack initiation mechanism in a single wire

is far from being sufficient for understanding the fatigue behavior.

To the best knowledge of the authors of this report, there is no quantita-

tive figure at this point to indicate what should be termed crack initiation

in a 0.25 in. (6.35 mm) diameter single wire. This lack of knowledge is

largely due to the extreme difficulty of observing microstructural changes

due to the fatigue process in a high-strength martensitic steel. In this

context, it should be noted that some efforts in the past have been undertaken

by Southwest Research Institute to develop an acoustic device for detecting

fatigue crack. The adoption of such a device for the detection of fatigue

crack initiation in a thin wire deserves careful investigation.
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A problem associated with practical engineering interests is concerned

with determining the fatigue initiation life of a thin wire. Once again,

there is at this point no quantitative figure to indicate exactly what

fraction of the total life is due to initiation. However, it can be ascer-

tained that once a crack is sizeable in a wire specimen, hardly any time

will elapse before the wire breaks. Therefore, for all practical purposes,

a visible crack in a thin wire means the termination of wire life. At the

same time, the long service life of a wire under commonly occurring service

conditions is indicative of its high resistance to fatigue.

The above remarks are sufficient to establish the importance of further

research into the accurate prediction of fatigue initiation life. In this

report, we have outlined two possible methods to determine initiation life.

The first of these methods relates the fatigue initiation life in a single

wire to the applied load or load fluctuation, material properties and strain-

hardening exponent. The relationship can be derived semi -empirically using

experimental results. We, therefore, recommend that some fatigue crack

initiation tests, similar to the one carried out by Barsom for HY-130 steel,

be performed.

The second method to determine initiation life is also semi -empirical and

is based on experimental results relating the initiation life to the notch

radius and notch toughness factor. In the case of a thin wire, it is, however,

difficult to conceive an experiment with notched specimen, particularly since

a notched wire is likely to exhibit a rapid fatigue failure which is not

indicative of its initiation life. We, therefore, consider that some research

effort be expended to develop a meaningful experiment along this line.

Fatigue Behavior of Wire Under Variable Amplitude and Random Loading

Bridge cables are subjected to two major loading conditions: (1) impact

or dynamic effects due to live load; and (2) wind loads. The live load has

variable amplitude and is often random in nature while wind loads are almost

always random. It is, therefore, reasonable that the fatigue behavior of wire

be studied under the conditions of variable amplitude and random loading.
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Within the scope of the present contract, we have studied the fatigue

behavior of wires and cables under wind loads considering the latter as

having variable amplitude. We have also presented some rudimentary ideas

in the report which accounts for the random nature of the wind load. Unlike

the conventional root mean square analysis, our approach considered a reli-

ability type analysis in which the fatigue damage of a wire was expressed in

terms of the interference of two probability distributions, namely, those of

strength and applied stress. This latter approach is more rational, since

it not only incorporates the random nature of wind loads, but also considers

random response of material. The approach is certainly more promising, and

it is strongly recommended that further analytical work be pursued in this

area to obtain a better understanding of the fatigue behavior.

Correlation Between Wire Fatigue and Cable Fatigue

Reemsnyder has done some experimental work on both wire and cable (strand)

fatigue and has concluded that there is no apparent correlation between the

two corresponding fatigue lives. Fisher and Viest have also done some experi-

ments on the fatigue lives of wires and strands, but have not made any attempt

to correlate results. Reemsnyder' s experimental data were far too sparse and

showed a wide scatter. Besides, it is not clear just what methods of fatigue

testing were used for wires and ropes and whether the experiments were con-

sistently reproducible. Therefore, the conclusion reached by Reemsnyder is

not definitive and this area of research requires further consideration.

We recommend an analytical approach for the correlation study between wire

fatigue and cable fatigue. The approach is based on the consideration that when

a single wire in a cable fails by fatigue, a gradual load transfer mechanism

takes place. The physical model is, therefore, one which reflects the connec-

tion between the applied stress distribution in a single wire to that in the

cable. Taking into account that the strength distribution in each wire is

identical, the approach leads to the relationship between the fatigue life of

a cable and that of a wire.

As discussed earlier, the fatigue process in a single wire due to wind

loads is random in nature. The same is true for any wire in a cable. In

general, one can assume that the fatigue behavior of each wire is statistically
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independent. However, it is conceivable that when the wires form a cable,

the gradual load transfer mechanism imposes a conditionally on subsequent

wire failures based on how and when the first wire fails. This type of

rationalization of the fatigue process in a cable gives rise to a stochastic

model which can be readily incorporated in the above analytical approach.

Parallel to the analytical study of correlation between wire fatigue

and cable fatigue, it is highly recommended that extensive, but carefully

designed experiments be performed to generate sufficiently large sets of

fatigue data for single wires and cables. In addition to providing a reli-

able data base for design engineers, such an effort will be useful in

verifying the analytical models for cable fatigue.

Fracture Toughness of Wire Materials

The conventional fracture mechanics approach to determine the fracture

toughness under static loading is to follow the K
Tr
-test method (ASTM E399-74)

developed by the American Society for the Testing of Materials (ref. ASTM STP-463)

The test method has stringent requirements on specimen sizes to insure the

accurate reproducibility of test results. For this reason, the application of

the method to structures like thin wires and cables has not been successful.

On the other hand, for fracture and fatigue analysis, it is essential to know

the value of K
jr

either experimentally or analytically. Therefore, this area

constitutes another forefront of research.

The analytical method of determining Kj^ entails the derivation of an

expression for the stress intensity factor HL. In the present report, K-

for a single wire was approximated by several expressions. One expression

is a direct extension of the original analytical work by Folias for circum-

ferential cracks on a hollow cylinder to the case of a solid cylinder. The

analytical basis of such extension was not investigated within the scope of

the present contract. It is, therefore, recommended to pursue this

investigation.

Another approximate expression for K- considered in this report is involved

with the finite element analysis of circumferential crack in a solid cylinder.
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The original work was due to Hilton and Si h and a numerical solution of axi-

symmetric crack problems in a solid cylinder with a circumferential edge

crack was given for a crack length to specimen radius ratio of 0.4 and 0.5.

It is recommended that this type of finite element analysis for different

crack sizes and geometries be pursued.

The analytical expression for stress intensity factor will directly lead

to the determination of fracture toughness once the maximum design load is

known and the critical crack length is found experimentally or otherwise.

Environmental Effects on Fatigue Life of Wires

In general, fracture toughness of high yield strength (above 140 ksi

[965 MPa]) steels is not very sensitive to a change in temperature. However,

if a particular bridge site experiences a severe seasonal temperature fluctua-

tion, cables and wires will undergo a thermal stress reversal in addition to

stress reversals due to mechanical and wind loading. The magnitude of thermal

stress fluctuation may be significant to cause a reduction in the fatigue life.

Corrosion fatigue is another area which requires some attention. Corro-

sion may not be a severe problem for cable-stayed bridges in the United States

primarily because stayed cables are jacketed with PVC cylinders. On the other

hand, several suspension type cable bridges have bare cables and some have

zinc-coated and galvanized cables. During the lifetime of these cables, cor-

rosive environments affect their fatigue behavior considerably. We, therefore,

recommend to look into the problem of environmental effects on fatigue life of

wi res.

Fatigue Testing of Wires and Cables

An examination of a specimen failed by fatigue generally reveals some

qualitative information. For example, if the fracture surface of a specimen

is flat, it indicates the absence of an appreciable amount of gross plastic

deformation during service life. The flatness of the fracture surface can be

ascertained by naked eyes, optical microscopy or electron microscopy depend-

ing on specimen and crack size and scale of measurements. In some cases, it

may even be possible to obtain a quantitative estimate of the fatigue life
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based on an analysis of the characteristic markings on the fracture surface

called the "striation lines." However, this does not give a complete under-

standing of the quantitative aspects of fatigue behavior of a structure.

It is still essential to carry out some form of fatigue testing in conjunc-

tion with empirical or analytical work described above.

Over the years, a number of fatigue testing has been developed in the

laboratory scale. Those tests can be classified broadly in three categories:

constant stress-amplitude testing, constant strain-amplitude testing, and

constant stress intensity factor testing. At present, most of the testing

methods are of the first type.

We have already noted that fracture and fatigue experiments with single

wires are too few for the purpose of any meaningful analysis. The lack of

extensive experimentation is understandable. The first and foremost difficulty

in performing a single wire fatigue test is to design a test rig with allowable

load range while insuring the constant stress-amplitude be maintained.

Secondly, for a tension-compression type axial fatigue test, it is difficult

to design a test rig so that the grips at wire ends do not produce undesirable

mechanical notches. The experiments of Fisher and Viest with single wires

indicate a significant number of wire failure at the grouts and it is suspected

this, in part, is due to mechanical notches.

Even when a proper test set-up is designed, it is not an easy task to

devise an efficient method of crack measurements. Considering all these, it

is strongly recommended to expend some research effort into an extensive but

careful experimental investigation of wire fatigue life. Some experiments in

this area are suggested below.

1. Crack Growth Measurement in a Single Wire

This testing program will allow the measurement of crack growth in a

single wire notched specimen under the action of repeated tensile loading.

The major equipment for this testing is an MTS machine with specially

designed stress rig similar to the one shown in Figure 51. The specimen is
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fixed between fixtures E and D by means of sockets. Fixture D is fixed, and

fixture E moves up and down along with block G due to the reciprocal motion

produced by the rotation of cam K. The reciprocal motion induces zero-to-

tension loading in the specimen. The specimen must be sufficiently long to

insure that the premature failure Goes not occur due to severe stress concen-

tration induced by mechanical notches at the grip or by imperfections along

the length.

For the measurement of crack growth under fatigue loading, the

specimen may be connected to a potentiometer circuit as shown in Figure 52.

A plotter is provided in parallel to the variable resistance R to plot the

changes of voltage across R as a function of the number of fatigue loading

cycles. R may be calibrated by an ammeter.

When the specimen is cracked or when the crack length is increased, the

net cross-section area of the specimen will decrease and hence, R will
s

increase. Any change in R will change the value of current, I in the circuit.

Therefore, the potential difference across R will change. If a is the

crack length and E n is the potential difference across R , then it is
R
o

o'

evident that:

# = f (R , R , , R , r ) (66)
dE D s' sh o o'

R
o

For a simple potentiometer circuit such as the one in Figure 52, the function f

can be easily determined. Hence, from the measurement of E
R

, a can be found.

o

A typical curve relating E
R

to a is shown in Figure 53. It is also possible,

at this stage, to determine a relationship between crack length and the number

of cycles of load application, N, as shown schematically in Figure 54.

For better accuracy of experimental results, the basic test program can

be modified in various ways. An air cylinder can be used with calibrated

gauge to replace the cam-roller mechanical combination. This will not only

add accuracy to the tensile stress measurement but also provide the system

with a variable loading mechanism. The latter is achieved by changing the

air flow to the air cylinder. Similarly, a fiber optic can be used to replace

the potentiometer circuit. The optical signals from fiber optic can be

translated through photo cells to electrical signals which can then be

displayed in a CRT. Finally, acoustic transducer (ultrasonic) can be used

to replace the potentiometer circuit. During the crack propagation, the
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Figure 53. Schematic Relationship Between Er
q

and a

Figure 54. Schematic Relationship Between N and a
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ultrasonic transducer will attenuate resulting in acoustic emission. The

two latter modifications will give better accuracy in crack growth

measurements.

2. Three-Points Bend Test of a Single Wire

Wires used for manufacturing cables and strands are usually 0.25-0.375 in.

(6-10 mm) diameter and cold drawn. The conventional ASTM three-points bend

test is not suitable for these wires. Fisher and Viest suggested elsewhere

another form of three-points bend test which is only applicable for reinforcing

wires embedded in PCC slabs. To determine the bending fatigue characteristics

of a single wire, it is necessary to subject the wire alone to reverse bending.

Reemsnyder designed a test rig with a rotating buckled strut fitted to it to

allow completely reverse bending with ^/ery small axial load. However, this

test rig seems to give torsional rotation in addition to reverse bending.

In order to avoid torsional rotation, the reverse bending test of Reemsnyder

can be modified in the following manner.

First, the specimen will be fixed between two fixtures similar to D and E

of Figure 51. A small tension will be applied at both ends of the specimen to

make it straight. It is understood that the specimen for bend test is long

enough and is notched at midlength. A small segment of the specimen covering

both sides of the notch is embedded in an epoxy mat as shown in Figure 55. A

sinusoidal load can be applied across the epoxy resin mat through the use of

a cam-roller mechanical combination operated by step motors. Once again, this

can be achieved by a specially designed stress rig.

3. Fatigue Testing of a Cable

The experimental set-up for fatigue testing of a cable can be fairly

involved depending on the test program. For instance, the bending fatigue test

of a cable by a method similar to the one for single wires will require the

provision of an equipment to. create sinusoidal motion in a cable of diameter

4 in. (10 cm) or more. A simple tensile fatigue testing of cable is, however,

feasible using a universal testing machine and an acoustic emission console

including audio frequency spectrometer and tape recorder.

122



ro

QJ

U
CU
Cl

CO

O)
s-
^
+->

X
•1

—

u_

"O
c
fO

(1)

E
+->

0)

u 1—

<L)

Q.
I/O

cu

"O CO

O)

u
+->

+->

o o
Q_

4-
O

CU

U
+->

1—

rt3

E
o>

o

o
oo

IX).

Lf>

CU
s-
=3

CD

CU
s-

+->

X

123



REFERENCES

1. Leonhardt, F., "Latest Developments of Cable-Stayed Bridges for Long

Spans," Saertryk af Bygingsstatiske Meddelelser, Vol. 45, No. 4,

1974.

2. Strouhal , V., "Uber Eine Besondere Art der Tonnergung," Annalen der

Physik und Chemie, Vol. 5, 1878, pp. 216-251.

3. Feng, C.C., "The Measurement of Vortex-Induced Effects in Flow Past

Stationary and Oscillating Circular and D-Section Cylinders," MASc

Thesis, University of British Columbia, 1968.

4. Bishop, R.E.D., and Hassan, A.Y., "The Lift and Drag Forces on a Circular

Cylinder in a Flowing Fluid," Proc. Royal Society, London, Series A,

Vol. 277, 1963, pp. 32-50.

5. Hartlen, R.T., and Currie, I.G., "Lift Oscillator Model of Vortex Induced

Vibration," ASCE Journal of Engineering Mechanics, EM-5, Vol. 96, 1970,

pp. 577-591.

6. Skop, R.A., and Griffin, O.M., "A Model for the Vortex Excited Resonant

Response of Bluff Cylinders," Journal of Sound and Vibration, Vol. 27,

1973, pp. 225-233.

7. Iwan, I.D., and Blevins, R.D., "A Model for Vortex-Induced Oscillation of

Structures," ASME Journal of Applied Mechanics, Vol. 41, 1974, pp. 581-586,

8. Birkhoff, G., and Zarantonel lo, E.H., Jets, Wakes, and Cavities , Academic

Press, New York, 1957.

9. Jones, Jr., G.W., "Unsteady Lift Forces Generated by Vortex Shedding About

a Large Stationary and Oscillating Cylinder at High Reynolds Number,"

Symposium on Unsteady Flow, American Society of Mechanical Engineers,

Philadelphia, May, 1968.

124



10. Griffin, O.M., Skop, R.A., and Ramberq, S.E., "The Resonant Vortex

Excited Vibrations of Structures and Cable Systems," Proceedings of

the Offshore Technology Conference, Paper No. 2319, Houston, Texas,

1975.

11. Landl , R., "Theoretical Model for Vortex-Induced Oscillations,"

Proceedings of the International Symposium on Vibration Problems

in Industry, Keswick, England, 1973.

12. Szechenyi , E., "Modele Mathematique du Mouvement Vibratoire Engendre

par un Echappment Tourbil lonnaire," La Recherche Aerospatiale, Vol. 1975,

No. 5, pp. 301-312.

13. Scanlan, R.H., and Tomko, J.J., "Aerofoil and Bridge Deck Flutter

Derivatives," Journal of Engineering Mechanics Division, ASCE, Vol. 97,

No. EM6, 1976, pp. 1717-1737.

14. Davenport, A.G., Isyumov, N., and Miyata, T., "The Experimental Determina-

tion of the Response of Suspension Bridges to Turbulent Wind," Proc.

Third Int. Conf. on Wind Effects on Buildings and Structures, Tokyo,

Japan, September 1971.

15. Irwin, H.P.A.H., "Wind Tunnel and Analytical Investigations of the Response

of Lions' Gate Bridge to a Turbulent Wind," Report LTR-LA-210, National

Aero. Estab. , N.R.C., Ottawa, Canada, June,1977.

16. Scanlan, R.H., and Gade, R.H., "Motion of Suspended Bridge Spans Under

Gusty Wind," Journal of Structural Division, ASCE, Vol. 103, No. ST9,

1977, pp. 1867-1883.

17. Chi, M., "Analysis of Operating Characteristics of Strands in Tension

Allowing End-Rotation," Paper No. 72, ASME Winter Annual Meeting,

November, 1972.

18. Karamchetty, S., "Some Geometrical Characteristics of Wires in Wire

Ropes," Proceedings of the Ninth SECTAM, May, 1978, pp. 519-541.

125



19. Phillips, J.W., and Costello, G.A., "Contact Stresses in Twisted Wire

Cables," J. of Eng. Mech. Div., Vol. 99, April, 1973, pp. 331-341.

20. Seely, F.B., and Smith, J.O., Advanced Mechanics of Materials , John

Wilev & Sons, Inc., New York, 1966.

21. Hruska, F.H., "Calculation of Stresses in Wire Ropes," Wire and Wire

Products, Vol. 26, September, 1951, pp. 766-767, 799-801.

22. Leissa, A., "Contact Stresses in Wire Ropes," Wire and Wire Products,

Vol. 34, May, 1959, pp. 307-314, 372-373.

23. Starkey, W.L., and Cress, H.A., "An Analysis of Critical Stresses and

Mode of Failure of a Wire Rope," Journal of Engineering for Industry,

Trans. ASME, November, 1959, pp. 307-316.

24. Stein, R.A., and Bert, C.W., "Stress Analysis of Wire Rope in Tension

and Torsion," Wire and Wire Products, Vol. 37, May, 1962, pp. 621-624,

June, 1962, pp. 769-770, 772 and 816.

25. Ernst, J.H., "Der E-Modul von Seilen unter Berucksichtigung des Durchanges,

Der Bavingenieur, Col. 40, No. 2, February 1965.

26. Scanlan, R.H., and Swart, R.L.
,

"Bending Stiffness and Strain in Stranded

Cables."

27. Karamchetty, S., "Theoretical Determination of Natural Torsional and

Extensional Frequencies of Wire Strands." To be published.

28. Kondo, K., Komatsu, S., Inoue, H., and Matsukawa, A., "Design and Con-

struction of Toyosato-Ohhashi Bridge," Der Stahlbau, No. 6. (1972),

pp. 282-189.

29. Andra, W., and Zellner, W., "Zugglieder aus Paralleldrahtbundeln und

ihre Verankerung bei hoher Dauerschwellbelastung," Die Bautechnik, Vol.

46, (1969), No. H8, pp. 263-268, No. H9, pp. 309-315.

126



30. Andra, W., and Saul, R., "Versuche mit Bundeln aus Parallelen Drahten und

Litzen fur die Nordbrucke Mannheim-Ludwigschafen und das Zeldach in Munchen,"

Pie Baut^cbnik Nos. 9, 1Q, and 11, (1974), pp. 289-298, 332-340, and 371-373.

31. Podolny, W. , and Scalzi, R., "Construction and Design of Cable-Stayed

Bridges," John Wiley & Sons, 1976.

32. Birkenmaier, M., "Fatigue Resistant Tendons for Cable-Stayed Construction,"

IABSE Proceedings P-30/80, May 1980, pp. 65-79.

33. Chi, M., "Response of Bridge Structural Members Under Wind-Induced Vibrations,"

Report No. FHWA-RD-78, 25, Federal Highway Administration, Office of Research

and Development, Washington, D.C., June, 1976.

34. Landgraf, R.W., Morrow, J.D., and Endo, T., Journal of Materials,

JMLSA, 4(1), 1969, p. 176.

35. Bullens, D.K., Steel and Its Heat Treatment, 1, 1938, p. 37.

36. Rolfe, S.T., and Barsom, J.M., Fractureand
_
Fatigue Control in Structures ,

Prentice-Hall, Inc., Englewood Cliffs, N.J., 1977.

37. Yokobori , T., Strength, Fatigue and Fracture of Materials , Noordhoff,

1965.

38. Barsom, J.M., and McNicol, R.C., "Effect of Stress Concentration on

Fatigue Crack Initiation in HY-130 Steel," ASTM STP-559, American

Society for Testing and Materials, Philadelphia, 1974.

3q. Roberts, R., Barsom, J.M., Fisher, J.W., and Rolfe, S.T., "Fracture

Mechanics for Bridge Design," Federal Highway Administration Report,

July, 1977.

40. Craeger, M., "The Elastic Stress-Field Near the Tip of a Blunt Crack,"

M. Sc. Thesis, Lehigh University, Bethlehem, PA, 1966.

1?7



41. Barsom, J.M., and McNicol, R.C., Unpublished data.

42. Reemsnyder, H.S., "The Mechanical Behavior and Fatigue Resistance of

Steel Wire, Strand, and Rope," Report of the Ad Hoc Committee on Mechanical

Rope and Cable, National Materials Advisory Board, National Research

Council, Washington, D.C., 1972.

43. Fisher, J.W., and Viest, I.M., "Fatigue Tests of Bridge Materials of the

AASHO Road Test," Highway Research Board Report No. HRB: OR-463, Special

Report No. 66, 1961.

44. Clark, W.G., Jr., "How Fatigue Crack Initiation and Growth Properties

Affect Material Selection and Design Criteria," Metals Engineering Quarterly,

August, 1974.

45. Clausing, D.P., "Tensile Properties of Eight Constructional Steels

Between 70° and 320° F.," Journal of Materials, 4, 2, June, 1969.

46. Barsom, J.M., "Fatigue Behavior of Pressure Vessel Steels," WRC Bulletin

194, Welding Research Council, New York, May, 1974.

47. Bucci, R.J., Clark, W.G., Jr., and Paris, P.C., "Fatigue Crack Propagation

Growth Rates Under a Wide Variation of AK for an ASTM A517 Grade F (T-l

)

Steel," ASTM STP513, American Society for Testing and Materials,

Philadelphia, 1972.

48. Imhof, E.J., and Barsom, J.M., "Fatigue and Corrosion-Fatigue Crack Growth

of 4340 Steel at Various Yield Strengths," ASTM STP 536, American Society

for Testing and Materials, Philadelphia, 1973.

49. Parry, M. , Nordberg, H., and Hertzberg, R.W., "Fatigue Crack Propagation

in A514 Base Plate and Welded Joints," Welding Journal, 51_, 10, October, 1972,

50. Sailors, R.H., "Relationship Between Tensile Properties and Microscopically

Ductile Plane-strain Fracture Toughness," ASTM STP-605, American Society

for Testing and Materials, Philadelphia.

128



51. Jones, M.H., and Brown, W.F., Jr., "Review of Developments in Plane

Strain Fracture Toughness Testing," ASTM STP-463, American Society

for Testing and Materials, Philadelphia.

52. Folias, E.S., "Asymptotic Approximations to Crack Problems in Shells," in

Fracture, ed. H. Leibowitz, Academic Press, 1971.

53. Hilton, P.D., and Sin, G.C., "Applications of the Finite Element Method to

the Calculations of Stress Intensity Factors," in Fracture , ed. H. Leibowitz,

Academic Press, 1971.

54. Weibull, W., "Ingeniors Vetenshaps Akadamein, Handlinger, 151 , (1939).

55. Freudenthal, A.M., "Statistical Aspects of Brittle Fracture," Fracture ,

Vol. 2, H. Liebowitz, ed., Academic Press, New York (1968).

56. Freudenthal, A.M., and Gumbel , E.J., "Physical and Statistical Aspects

of Fatigue," Advances in Mechanics , Vol. 4, pp. 111-138.

57. Andra, W., and Saul, R., "Die Festigkeit, insbesondere Dauerfestigkeit

langer Paral leldrahtbundel ,
" Die Bautechnik, 56 (1979), H4, pp. 128-130.

58. Miner, M.A., Journal of Applied Mechanics, ]2, 1954, p. A-159.

59. Jevtic, D., "Essais de Relaxation, de Fluage, de Fatigue et de

Comportement aux Temperatures Elevees des Fils d'Acier pour Beton

Precontract," pp. 66-74.

60. Bennett, E.W., and Boga, R.K., "Some Fatigue Tests of Large Diameter

Deformed Hard Drawn Wire Used for Prestressed Concrete," Engineering

and Public Works Review, January 1967, pp. 58-61.

61. Cullmore, M.S.G., "The Fatigue Strength of High Tensile Steel Wire Cable

Subjected to Stress Fluctuations of Small Amplitude."

129



62. Edwards, A.D., and Picard, A., "Fatigue Characteristics of Prestressing

Strands."

63. Fleming, J.F., "Fatigue of Cables," A Report to American Iron and Steel

Institute under Project No. 1201-311, SETEC CE 74-079, June 1974.

64. Castellaw, T., Frank, K., and Campbell, M., "Fatigue Design Character-

istics and Fatigue Testing of Prescon Stay Cable Anchorages." in Cable

Stayed Bridges , ed. E. Podolny, Jr., Federal Highway Administration,

Washington, D.C. 1977.

130



APPENDIX A

DYNAMICS OF STAY CABLES

I. Free Vibration Analysis of Stay Cables

The governing differential equation of the motion of a stay cable has

the following general form (see equation (9 ) also):

PA f^ + C K + |p (EI !^ -T)W(x.t) (Ail)

where all terms in the above equation have been explained previously in

Chapter 4.

The natural frequencies and mode shapes of a stay cable are obtained from

the complementary solution of equation (A-l). The following assumptions are

made in solving the complementary part of equation (A-l).

a) The natural frequencies of a stay cable are widely separated

from one another;

b) The damping is small and hence, can be neglected;

c) The stay cable has fixed ends; and finally,

d) The stiffness of the cable is constant along its axis and the axial

force, T, is independent of time.

Under the above assumptions, the equation of free vibration of a stay cable

is given by:

ei U - T B- + ^& - ° (A - 2)

By a separation of variable technique, and considering a solution of equation

(A-2) of the form,

y(x,t) = y(x)e
ia)t

(A-3)

the small amplitude, free, transverse vibration of a cable can be written as

follows:

EI - T ^ - pAw 2
y = (A-4)

Equation (A-4) is nondimensionalized by setting:
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thus yielding

Y =
I , X =

f (A-5)

d 4 Y d 2
Y

nr - p y- -
QY = ° ( fl-6 »

TL 2

where P = -ft = nondimensional force ,.
?

v

Q = Rl.^ = nondimensional frequency

The most general solution of equation (A-6) is given by:

Y x =y $ n X = z A sina X+B cosa X+C sinh3 X+D cosh3 X

n=l n =i
n nn nn nn n

(A-8)

where A , B , C , and D are coefficients to be determined from the boundary
n n n n

J

conditions, and where a and 3 are given by the following expressions

V" P

2

P

2

>#
V" Ji.&

(A-9)

The boundary conditions are those corresponding to the fixed ends and these are:

, d$
$=0 W1 = at X =
n dX

d* < A - 10 >

*n
=

° • df ° at X !

By applying the four boundary conditions in equation (A-10) to the expres-

sion for $
n
(X) (equation A-8) , one obtains a set of four homogeneous equations

in A , B , C , and D . For nontrivial solution, the determinant of the coefficient
n n n n

matrix must be zero and this yields:

a
2

- 3
n

2

cosh3
n
cosa

n
+ 2^ — sinh 3

n
sina

n
= 1 (A-l'l)

Equation (A-ll ) is the most general frequency equation for small amplitude

transverse vibration of a stay cable. The solution of this equation satisfying
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expressions in (A-9) gives the natural frequency, w . In practice, it is

more convenient to express the relationship between P and Q, or between P and

Z
2 where Z

2 = 4Q/P 2
as has been shown in Figures 10 through 14.

The solution of the transcendental equation (A-ll) can be substituted

back into expression (A-8), and the coefficients A , B , C , and D can bev i
n n n n

determined by usual eigenvalue analysis procedure. In particular, choosing

A = 1 arbitrarily and assuming B = -D , one finds that:
n

J a
n n

A = 1

n

a sinhB - 3 sina
n _ n n n n

n
"'

6
n
(cosa

n
- cosh 3

n
)

C = -_% (A-12)

3
n

3 sina - a sinhB
n

_ n n n n

n
""

3
n

(cosa
n

- cosh3
n

)

The term, $ , more commonly called the nth mode shape, can now be given

by:
3 sina - a s i n h

3

$ = sina X + —^ ^ ^—r^-1

? (coshB X-cosa X)
n n 3 (cosa

n
- cosh3

n
) n n

- -^— sinhB X (A-13)
3
n

n

II. Response of Cables to Harmonic Loading

Consider again the governing differential equation of motion given by

equation (A-l). The solution of (A-l) is sought in the following form:

y(x,t) = S
(J) (x)iJj (t) (A-14)JS

n
T
n

y
n

where cf) (x) is the nth natural mode of the cable, and ^n
(t) is the generalized

coordinate of the cable. Substituting (A-14) into (A-l), one obtains:

pA E 4>lx)5 (t) + ElEcf^UU (t)

n n

-T E^(x)i|; (t) + C E<D (x){[t) = F(t) (A-15)

n . n
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where it is assumed that F(x,t) is simply a harmonic function, F(t), of time.

An important property of the normal modes,
<f>

(x), is their orthogonality

with respect to mass density. This gives:

L

/ pA(|> (x)<|> (x)dx = 6
mn

(A-16)
o

where 6 is Kronecker delta. The latter is equal to 1 when m=n, and is equal
mn t j 1

to zero when m f n.

hence,

It is also known that <j> (x) is the complementary solution of (A-l) and

EIZ^V) - TlcV-U) - pAzA (x) = (A-l 7)

n n n

The above two equations, (A-16) and (A-l 7) , can be utilized to reduce equation

(A-l 5) to a set of second order uncoupled differential equations of the form:

T (t)

ty (t) + V- i> (t) + to
2

ip (t) = tP (A-18)r
n pA r

n
v y

n ^n
v

' M

n = 1 , 2, 3, . . .

where

T (t) = /
L

F(t)<j> (x)dx (A-19)

o

is the generalized force vector, and

M = /
L
pA(J)2(x) dx (A-20)

is the generalized mass.

Considering that the harmonic function, F(t), has the form:

F(t) = F cosw t = -4- p dV 2 C.costo t (A-21

)

o s I a cr L s

where all terms in the expression have been explained in Chapter 4 of the text,

the expression for T (t) and M are given by:

1-cosa L D D

T ( t ) = F (
2— — sinaL + -^- sinhBL

n o a
n % n 3

n
n

C

+ -^-coshB L -1) eosco
s
t (A-22)

n
n

= T cosco t
on s
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( I

2D
Mn= pAU (1+2Dn-C

n
)+-^ (<VCA>

n *n

i 2Cn O
n 2 -,

D
+

t%
2D

n
C
n

+ -^c.osh23
n
L

2D 3. -2D C a

^ c 0S 2a
n
L +(\^ ) sinh23

n
L

, ( n n n n n; sinS L sina L
+ u— n n

a
n

2 + e
n

2

,-2D a -2D C S x

+ « n n n n n)
,

cosh3
n
L cosa L

a
2 + 3

2

n n

+ ( 2C
n
B
n'

2C
n
a
n ) sinhg L cosa L]

n n

a 2+6 2
n n

,

(" 2C,2n
3
n'

2C
n
a
n) sinh3 L cosa L I (A-23)+ L ^

n n
j

a
2
+3

2

n n

Returning to equation (A-18), we assume that the damping coefficient is

proportional to mass density, and is given by:

c = 2r, go PA (A-24)s
n n

K

Equation (A-18) can then be rewritten as

(t) + 2r,j(t) + o)„V(t) = jP^- (A-25)Y
r\ '

s
n n

r
n

v
n
r
n M

n

The steady state solution of equation (A-25) is obtained as follows:

if; (t) = G
]n

sinwt + G
2n

coscot (A-26)

where the coefficients G, and G are given by:
In 2n 3 J

2r, w oj T
. n n s on

"In
"

M [(wn
2 - co

2
)

2 + (2? a) 00 )

2
]

n
LV

n s
v s

n n s
J

(A-27)

G
2n

on { n s

Mj(co 2 - a)
2

)

2 + (2c co go )

2
]

n
L \ n s n n s
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The general solution of the governing differential equation can now be

written as:

y(x,t) = Ey
n
(x,t) = F

Q
E<|>

n
(x) [G

ln
sinw

s
t + G^cosa^t] (A-28)

The solution can be nondimensional ized by setting

v
y
n
(Xit)

, X. = Ly"(x,t) (A-29)

The expressions for Y and y obtained in this manner are given in terms of
n n J

nondimensional force, P, and nondimensional frequency, Q, or more

appropriately, in terms of Z
2 as follows:

and

Y

X

n 2iTSt

C
L

n 2^St

(P,Z)

(P,Z)

(A-30)

(A-31)

f(P,Z) =

A+A+P [1-
1+/1+Z2

cosa
2/1 +Z 2 n

sina ]

2/T+Z 2 n

/=T+/UZ 7 [/P(1+/TTF) +1 - 2 1+/TTZT

2 /FT2
"

(A-32)

g(P,z)
2(l+Z 2 )-[l+Z 2+/T+Z 2 ]cosa -Z/1+Z 2 sina

v
'

L J
n n_

-3-/Fz 2+2/UZ 2/P(l+/TTP)

(A-33)
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APPENDIX B

NATURAL FREQUENCIES OF PASCO-KENNEWICK AND

LULING BRIDGE CABLES
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Figure B-l. Model of Intercity Bridge on Columbia River

in Pasco-Kennewick, Washington.

Description

Overall length - 2503 ft. (763 m)

Main span - 981 ft. (299 m)

Cable-stayed girder length - 1794 ft. (547 m)

Total number of cables - 144

Special Features of Stay-Cables

Number of wires in a cable - 73 (Group IV) to 283 (Group I)

Wire diameter - 0.25 in. (6 mm) BBR type

Cable length - 180 ft. (55 m) to 506 ft. (154 m)

Outer diameter of cable - 6 in. (15 cm)

Wire stress range - 59 ksi (407 MPa) to 108 ksi (745 MPa)
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Pasco-Kennewick Group I Cables

NORMAL FDRCE= 800 CKIPS>

FREQ.DF BEAM CCVCLE. P. S> FREQ.DF STRING <CVOLE. P,

MDDE= 1 .736171 . 789486
MDDE= c __ __ 1.47879 _____ 1 . 45397
MDDE= 3 8.81 088 8. 13846
MDDE= 4 8.9491 3.91794
MDDE= c 3.68968 _____ 3.64743
MDDE= 6 4.43846 4.37691
MDDE= f' 5. 17736 — .

— —,, ,. 5. 1064
NDDE= 8 5.98633 _ _ _ _ 5.83588
MDDE= CJ

__ 6. 67888 _____ 6. 56537
MDDE= 1 7.43416 __ __ 7. 39486
MDDE= 11 __ „ 3. 19437 _____ 8. 08434
MDHE= 1 c ... 3.95934 8. 75333
MDDE= 13 _ — _ — 9. 78947 9.43331
MDDE= 14 __ 1 0. 5053 1 . 8 1 88
MDDE= 1 c

1 -_' _ mmm _^ 1 1 . 8369 1 0. 9483
MDDE= 1

6

18. 0749 11.6718
MDDE= 1 r 13. 3697 13.401

3

MDDE= 18 13. 671

7

13. 13 07
MDDE= 1 9 14.4318 13. 86 08
NDIiE= 8 -_-____ 15.8986 __ 14.5897
MDDE= £1 16. 1848 _,-__,._ 15.31 93
MDDE= LL 16. 9535 16. 0487
MDDE= C !• _ 17.3017 _____ 16. 7788
MDDE= £4 13.6543 17. 5 077
MDDE= -iC 19. 5165 13.8371
MDDE= £6 80. 3387 13.9666
NDDE= c f —. _._ — C 1 • C i 1 l2 _____ 19.6961
NDDE= CO dd. 1643 8 0.4856
MDDE= £9 83. 0683 81. 1551
MDDE= 3 83. 9836 81 . 8846
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HDRMRL FDRCE= 900 (KIPS>

FREQ.DF BERN (CYCLE. P. S> FREQ.DF STRING (CYCLE.

P

MDDE = 1 . 73 0419 N 1 1 _' 1 _« 1

MDDE= c 1.561 £5 1.54747
MDDE= 3 _ _ £.34391 — — 8.3£1£1
MDDE= 4 3. 1£58£ 3. 09495
NDDE= _ 3.91033 3. 36869
MDDE= 6 4. 697 03 4.64£4£
MDDE = i*' _ _ _ 5.48614 .

,

5.41616
NDDE= 8 6.37315 _____ 6. 1399
mdhe= 9 7. 07345 6 . 96364
MDDE= 1 _ 7.37844 r r i' i *' r

MDDE= 11 O iZ 7CC -i 3.51111
NDDE= 1 c 9.48311 ______ 9.33435
NDDE= 1 o 1 0. £956 1 0. 0586
MDDE= 14 11. 1133 _ 1 0. 3333
MDDE= 1 cr

1 1 . 9367 1 1 . 6 061
MDDE= 1 6 18.7661 18. 3798
MDDE= 1 "7

1 3 . 6 1

9

1 j. 1 _' -• _'

MDDE= 13 14.4445 13.9873
MDDE= 1 9 15.£94£ — .. . . 14.701
NDDE = £0 16.1514 15.4747
MDDE= £1 __ 17. 0164 _ 16. 8485
MDDE= CG. 17.3396 1 r' • LI 888
MDDE= c o 13.7714 17. 796
NDnE = £4 19. 668 13.5697
MDDE= C-i £0. 5613 19.3434
MDDE= £6 81.4711 8 0. 1 178
rianE= C ( _ ££. 39 03 30. 39 09
MDDE= CO 83.3194 ______ 81 . 6646
MDDE = £9 84.8591 38.4384
MDHE = 3 85.3 095 £3.£1£1
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NORMAL FDRCE= 1000

FREQ.DF BEAM {CYCLE. P. S> .

{KIPS>

.FREQ.DF STRING {CYCLE.

P

MDDE= 1

MDDE= £

MDnE= 3

MDDE= 4
MDDE= 5
NDDE= 6

MDDE= 7
MDDE= 8
MDDE= 9
NDDE =
MDDE =
NDDE=
MDDE=
MDDE =
MDDE=
NDnE =
MDDE =

MDHE=
MDDE =
NDDE =
MDDE= 81
MDDE= ££'

MDDE= £3
MDDE= £4
MDDE= £5
MDDE= £6
MDDE= £7
MDDE= £3
MDDE= £9
MDnE= 30

c'U

• O i— i—c t- c
1.64493
£.46336

4. 11919
4.94735
_• i" r r" o r

6.61113
7.44751
3.3374
9. 13113
9.97988
0.3319
1 . 6396

•
_

| c c- •- -?
C . _" _iC (

3.4315
4.3963
I. 1777
6. 0653
6.9611

. 3633

.7744
.9.6931
£0.6£0£
,Cl . .JJbC

££.501£
£3.4556
34.4197
35.3933
36. 3731

.315539
1.63113
£. 44677
3. £6£36
4. 07795
4.39353
5.7 0913
6.53471
7. 34 03
3. 15539
3.97143
9. 737 07
0.6 037
1.4133
C CO •!•O
3. 0494
3.365
4. 63 06
5.4963
6 . 3 1 1

8

7. 1374
7.943
3.7535
9.5741

30. 3897
31 . 8 053
38. 08 09
c! c! . o -• 65
33.6581
34. 4677
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NDRMRL FDRCE= 1100

FREQ.DF BERN CCYCLE. P. S>

.

<XIPS>

.FREQ.DF STRING (CYCLE.

P

NDDE = 1 . 8fec'Ub5

NDDE= C __ 1.73451
NDDE= •~i

iz! . 5y77
NDDE = 4 3. 453 03
NDDE= c „ 4.31733
NDDE = 6 _ __ _i . 1 O _i JC
MDDE= r _ 6. 05545
NDDE = y 6 . 933
MDDE= Q 7. 8 0353
NDDE = 1 3.6334
MDDE= 11 „, 9. 56499
NDHE = 1 C — —.—._ 10.4516
NDDE= 1 — ______ 1 1 . 3437
NDDE = 14 13. 3336
NDDE= 1 -' _ _ _ — 13. 1396
MDDE= 1

6

14. 0461
NDDE= 1 r 14.9584
NDDE= IS 15.3763
NDDE= 1

9

__ 1 6 . 8 1

3

NDDE= 80 _____ 17. 7336
NDDE = £1 IS. 6786
NDDE= cc 19.619
NDIiE= cz- _____,.. .., 3 U . 5733
NDDE = £4 ______ 81.5356
NDDE= •-cr

____., S3. 5064
NDDE= £6

, . „ i_ •_• . •+_ _i_
NDDE= c r 84.4744
NDriE= c o — — — — a. _• 4 f c c
NDDE = £9 86. 4796
NDDE= 3 87. 4969

. 855397
1.71 079
8.56619
3.48159
4.87699
5. 13339
5. 9S77S
6.S4 3 1 3

. 4 0937
0.8643
1. 18 08
1 . 9756
8.331
3. 6864
4.5418
5.3973
6. 8586
7. 1 079
7. 9633
3.3187
9.6741
0.5895
1 . 3349
8.8403
3. 0957
3.9511
4.8 065
5.6619
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NORMAL FORCE= 1200

FREQ.OF BEAM (CYCLE. P. S>

(KIPx.:-

.FREQ.OF STRING (CYCLE. P,

MODE= 1 .
':^•0 0096 . 893434

MODE= c 1 .8 0055 1 . 73687
MODE= 3 C , 70173 ________ 2. 68 03
MODE= 4 _> . 6 0393 3.57374
MODE= 4 .5 0767 4.46717
MODE= f, ._i

. 4 1 3 1

5

5.36 061
MODE= I _____ 6 . 32 077 ______ 6.254 04
MODE= 3 r .23 091 7. 14747
MODE= 9 3 . 14389 3. 04 091
MODE= 1 Q

. 06 08 8.93434
MODE= 11 Q

. 97982 ______ 9. 82778
MODE= 1 C 10.9035 1 0. 7212
MOnE= 1

"-'
-

, r „ _- _- 11.3314 _____ 11.6146
MODE= 14 _ _ _ _ 12. 7638' __ 12.5081
MODE = 1

*~
_ 1 3 .7012 ______ 13.4 1

5

MODE = 1

6

______ 14.6439 _____ 14.2949
MODE= 1

1'

. _ _ _ 15.5921 15. 1884
MODE= 13 16.5463 16. 0818
MODE= 1 9 17. 5 067 _ 16.9753
MDDE= 2 18.4736 17. 3687
MODE = 21 19.4475 ______ 13.7621
MODE= cc __ 2 0. 4285 19. 6556
MODE= c-3 21.417 2 0.549
MODE= 24 22.4134 21.4424
MODE=

-iCC _'
,

23. 41 78 22.3359
MODE = 26 24. 43 06 _____ __ 23.2293
MODE = C f" 25.4521 24. 1227
MODE= CO 26. 4826 25. 0162
MODE = 29 c r • - 1 c c 4 __ 25. 9 096
MODE= 3 c O • -' I 1 I 26.3 03
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NDRMRL FDRCE= 1300

FREQ.DF BERN CCYCLE. P. S> .

•::kips>

.FREQ.DF STRING CCYCLE.P

MDDE = 1

MDDE = C

r-innE= •~i

NDDE= 4
MDDE=
MDDE= s
MDDE= I

MDDE= 8
MDDE= Q

MDDE= 1

MDDE= 11

MDriE= 1 c

MDDE= 13
MDHE= 14
MDDE = 1 cr

MDDE= 1

6

NDDE= 1 r

MDDE = 13
NDDE= 1

9

MDDE= £0
MDDE= 31
NDDE= C C
MDDE= C -•

MDDE= 34
MDDE= ~|ETCJ
MDDE= £6
NDDE- c r

NDDE= C o
MDDE = £9
NDDE = 3

. 9-.::65,c
1.1:37349
C o '3111
3.74975
4. 63977
5.63151
£ C" "7 C" •-, -|

1 . _l Ll 1 _l J'

8. 47 049
9.4££53
1 fi -'

"^
'-

1

11 o o r i—

1 c . 3 05
1 o . £6S£
14 . £4 06
15 .£181
1

6

. £ 1J 9
1 r . 1895
18 . 1841
1 9 . 185
£0 . 19£5
£1 .£07
cc . ££86
CO . £579
£4 . £949
C_' .34
£6 . 3935
c r . 4557
c o . 5£69
£9 . 6 07£

. 9£9915
1.3 5983
C l' 8975
~Z'

"7 1966
4.t 4958

7949
6.5 0941
7.4393£
y . -j 69£4
9. £ 9915
1 0. ££91
11. 159
1 C • 0839
1 3

.

0188
1 3

.

9437
14. 3786
4 ZZ
1 _' 8 036
16. 7385
1 1'" 6684
l y

.

5983
19. 5£8£
£ . 4581
£1. 3881
cc 3 1

8

CO . £479
£4. 1778
- trC _' 1 077
£6. 0376
£6. 9675
c r • 8975
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MDRMRL FORCE* 1400

FREQ.DF BERN (CYCLE. P. S>

XKIPS)

.FREQ.DF STRING (CYCLE. P,

MODE= 1
Q'" 1674 .965018

MDDE= C — —_

—

i.'34368 1 . 93 04
MDDE= ._» _ _ _ „ C m 31635 CO? _ U _'

MDDE= 4 •-' m '39003 3.36 07
rtDDE= cr 4. 365 0£ _______ 4. 88509
MDDE= 6 _ _ _ er 34167 5.79011
MDDE= r 6. 3£031 _____ 6.75513
MDHE= 3 _ _ ___ __ i' • 3 0133 7 . 73 1

5

MDDE= 9 __ _ —

.

3.73438 8.63516
MDDE= 1 9.77145 9.65018
MDDE= 11 _ _ 1 0. 7613 _______ 1 0.6153
MDDE = 1 c 11 . 7548 11.5308
mobe= 1 z* .

, _
n

.. 1 c . i -ice 1 C . •_' *t _'C
MDDE= 14 ,_ 13 . 7539 13.5103
MDDE = 1 _' 14 .7601 __ 14.4753
MQDE= 1 6 1 _' .7713 15.44 03
MDDE= 1

1*'

1

6

. 7876 16.4 053
MDDE= 1 3 1 r . 8 094 17. 37 3

MDDE= 1

9

1 H ft '

-! 7 18. 335 3

MDDE= £0 1 9 . 87 07 __ _ —

_

19. 3 04
MDDE= 31 .,_ £0 . 91 08 _____ £0.£654
MDHE= LL £1 . 9577 £1 .£304
MDDE= CO CO . 0115 ££. 1954
MDDE= 34 £4 . 0736 _____ £3. 16 04
NDDE= •-.er -icr__' . 141£ _____ c!4 . 1355
NDDE= £6 £6 .£177 85. 09 05
MDDE= i_. r _______ c r . 3 033 86. 0555
MDDE= £8 CO . 3953 £7. 0£05
MDDE= £9 ______ £9 .497 Ci' . ? O -' ->

NDDE= 3 3 . 6 076 £8.9506
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nUKHHL hUKUt= 1SUU

FREQ.DF BERN (CYCLE. P. S>

.

(KlPi.)

.FREQ.DF STRING (CYCLE. P. S!

MDDE= 1 1. 0554
MDDE= C c . 1 1 4
MDDE= •~i

Z* . 01791
MDDE = 4 „ _ 4 . 03537
MDDE= cr

._. ._i . 03413
MDDE= 6 6 . 04443
MDDE= "7

r . 05675
MDDE= 8 _ 3 , 07136
NDDE= Q Q

. 03833
MDDE= 1 _. _ 10.1 033
MDDE= 11 ... , ., 11.1314
MDDE= 1 c 1£. 158
MDDE= 1

'-' 13. 1334
MDBE= 14 14. £££9
NDDE= 1 c

1 •_' 15. £619
MDHE= 1

6

1 6 . 3: 5 6
NDDE= 1 r _______ 17.3543
MDDE= 18 13.4033
MDDE= 1

9

_ _ —_ 19. 4679
MDDE= 8 £0.5334
NDDE= £1 £1 . 6 05£
NDDE = cc __ ££.6834
MDDE= C -• £3.7684
MDDE= £4 »£4. 86 04
MDnE= _ £5.9593
NDDE= £6 £7. 0663
MDDE = C f £8. 1816
MDDE= CO £9. 3 046
riDDE= £9 —.___-_ 30. 436
MDDE= 3 3 1.5761

4

yyyyyy
1 . 99778
99667
99556
99445
99334

99111

£0
£1

£4

9867
9856
9345

98££
9811

9778
9767
9756
9745
9733
97££
9711
97
9639
9673
9667
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NDRMfiL FORCE* 1600

FREQ.DF BERN (CYCLE. P. S>

CKIPS>

.FREQ.DF STRING (CYCLE.

P

MDDE= 1

MDDE= £

MDDE= 3

MDDE= 4
MDDE= 5
MDDE= 6
MDDE= 7

MDDE= 8

MDDE= 9
MDDE=
MDDE =
MDDE=
MDnE =
MDDE =
MDDE =

MniiE =

MDDE =
MDDE =
MDDE=
MDDE= £0
MDDE= £1
MDDE= £2
MDnE= £3
MDDE= £4
NDDE= £5
MDDE= £6
MDDE= £7
MDDE= £3
MDDE= £9
MDDE = 30

1. 0383
£. 0769
3.11614
4. 156£9
5. 1977
6. £4 065
7. £3547
3.33£45
9.3819
0.4341
1 . 4895
£.5488
3.6105
4. 6769
5.7476
6-8228
7. 90£9
3. 988

£

£0. 0739
£1. 1753
c!c • i_ (' f i'

co . jobJ
£4.5018
£5.6£4
86. 75 38
£7. 3899
£9. 034£
30. 1864
31.3463
38.5156

1. 1.13165
8. 06389
3. 09494
4. 12659
5. 15384
6. 13988
r . ccl j -•

8.85313
9.83488
10.3165
11. 3481
1 C • 3793
13. 4114
14. 4431
1 cr
1 _• i 4747
1 t« . 5 064
1 r

C •-• i

-
i

13. 5696
1 9 . 6 1 3

£0 . 6389
£1 . 6646
CC . 696£
C-Z1 . 7£79
£4 . 7595
~.cCJ . 79 1£
26 o c c o
ll r . 8545
c o .8361
£9 .9178
3 1

J

. 9494
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Pasco-Kennewick Group I Cables

NORMAL FDRCE= 600 <KIPS>

FREQ.DF BEAM CCYCLE. P. S> FREQ.DF STRING <CYCLE-P.S>

MDDE= 1 3.06447 3.03341
MDDE= £ 6.13134 6.06683
MDDE= 3 9.3 0355 9.10 033
MDDE= 4 13.33 07 13.1336
MDDE= 5 15.363 15.167
MDDE= 6 13.4665 13.3005
MDDE= 7 31.5737 31.3339
MDDE= 8 34.7067 34.3673
MDDE = 9 37.8537 37.3007
MDDE= 10 31.0189 30.3341
NDDE= 11 34.3074 33.3675
MDDE= 18 37.4804 36.4009
MDDE= 13 40.66 39.4343
MDDE= 14 43.9388 48.4677
NDDE= 15 47.887 45.5 011
MDDE= 16 50.5585 43.5345
MDDE= 17 53.9847 51.5679
MDDE= 13 57.3874 54.6013
NDDE= 19 60.7685 57.6348
NDDE= 80 64.3499 60.6688
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NORMAL FDRCE= 500 <KIPS>

FREQ.DF BEAM {CYCLE. P. S> FREQ.DF STRING (CYCLE. P. S)

MQDE= 1 £. 3 0034 8.76911
MDDE= _ "=;. b0399 cr cr ~.o -i -.

MDDE= ~l
__ 3.41074 3.3 0734

MDDE= 4 1 1 . £36 1 1 . 0765
MDDE= cr

._i 14. 0513 13.3456
MDDE= 6 16. 8388 16.6147
MDDE= "7

__ 19.7414 19.3833
MDDE= 8 ££. 61 1£ 8£. 15£9
NDDE= 9 £5. 5 07 £4. 9££
MDDE= 1 _ £8.4133 _ £7.6911
riDDE= 11 31.3433 30. 46 03
NDDE= 1 c 34.3109 33.3394
MDDE=

14
37. 3 036
4 0.3854

35.9985
MDDE= 38. 7676
MDDE= h cr

1 J 43.3316 _ 41.5367
MDDE= 1 6 _____ 46.4733 44.3 053
MDDE= 1 r 49. 6 035 47. 0749
MDDE= 1 ft __. 53.7714 49.344
MDDE= 1 9 55.9319 58.613£
MDDE= £0 59.8359 cr c=- "i i*i o "_'

149



NORMAL FORCE= 400 <KIPS>

FREQ.OF BEAM (CYCLE. P. S> FREQ.OF STRING (CYCLE. P. $)

MODE= 1 3. 5 03 3 . 476-77

NODE= C 5. 01379 4.95354
NODE= 3 7.53519 „ 7.43 031
MODE = 4 1 0. 06 9. 9 07 03

MDDE= tr 13.5959 13.3333
MODE = 6 15. 1457 14. 36 06
MODE= "7

1 r

•

rice 17.3374
nonE= 3 30. 3979 19.3143
MDDE= Q 33. 9057 33.3909
MODE = 10 -i cr tr -i .-

C _' . •_oo 34. 7677
MODE= 11 33. 1974 37 . 3445
NDDE = 13

13

3 0. 3366 L^i idlC
MODE= 33. 6 073 33. 193
MODE= 14

15

3 6 . 36 36 34.6743
MODE= 39. 1564 37. 1515
MODE= 16 41.9333
NODE= 17 44.3617 43. 1051
MODE= IS 47. 7737 44.5313
MODE = 19 ______ 50.7415 47. 0536
MODE = £0 49.5354
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NORMAL FDRCE= 300 <KIPS>

FREQ.DF BERN (CYCLE. P. S) FREQ.OF STRING (CYCLE. P,

MODE= 1 £. 1763
MODE= C _ _ _ _ 4. 35535
MODE= •_j 6.54137
MDDE= 4 3.73759
MDDE = c

1 0. 946£
MODE = 6 13. 1703
MODE= r* _____ 15.4147
MODE= 3 17. 63 07
MODE= Q 19. 97£
MODE= 1 ££.£915
MODE= 11 £4.6421
MODE= 1 c £7. 0£66
MODE= 1

'"-'

— —— — £9.4477
MDDE= 14 31.9081
MDDE= 1

—
34.4105

NDDE= 1 6 36. 9572
MDDE= 1 r 39.5507
MDDE = is 42. 1933
MDDE= 1 9 44.3373
MDDE= £0 47.6348
MDDE= £1 5 0.4379
MODE= LLC 53.2935
MDDE= C-Z1 56.2186
MDDE= £4 59. 1999
MDDE = _, 62. 2442
MDDE= 26 65.353
MDDE= c r" _ 63.5231
NDDE = CO 71 . 77 08
MDDE = £9 75. 0827
MDDE = 3 78.4649

2. 14495
4. 23989
6.43434
3.57978
0. 7247
2. 3697
5. 0146
7. 1596
9.3 045

21.4495
23.5944
25.7394
27.3843
30. 0292
32. 1742
34.3191
36.4641
33.6 09
40.754
42.3989
45. 0439
47. 1888
49.3333
51.4787
53.6237
55.7636
j f . ? 1 : •_

60. 0585
62.2034
64.3434
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NORMAL FDRCE= £00 CKIPS>

FREQ.DF BEAM (.CYCLE. P. S> FREQ.DF STRING < r'CLE.P.S::-

MDDE = 1

MDDE = C

MQDE= ~i

MDDE= 4
MDDE= _i

MDDE= 6
MDDE = r

NDDE = 3

MDDE= 9

MDDE = 1

MDDE= 11

MDDE = 1 c
MDDE = 13
MDnE = 14
MDDE= 1 c

1 _'

MDnE= 1

6

MDDE = 1 r'

MDDE= 13
MDHE= 1

9

MDDE = £0
MQDE = £1
MDnE = C C
MDDE= C -

MDDE= £4
MDDE=
MDDE= £6
MDDE= C f

MDDE= C O
MDDE= £9
MDDE = 3

1 . 7S£9£
3.56933
5.3647
7. 17145
3.994
0.3363
£.7017
4.5943
6 . 5175
3.4743

£0. 4695
££. 5 049
£4.534
£6. 7 099

31. 1131
33.3957
1> _' . i 1' _' b
-i .-i > -• tr z.<

40. 5966
43. 1£19
45.7131
43.3719
51. 10 0£
ET -i QQQC

56.7714
59.7173
63.7334
65. 3363
69. 0117

1.75134
3. 5 0363
5.35403
7. 0537
3.75671
1 0. 5 031
13. £594
14.01 07
15.76E1
17.5134
19.3648
£ 1.0161
del. 7674
£4.5183
£6. £7 01

£3. 0315
c'y . f~ f dy
31.5£4£
-

1
- - -? cr trO O . Cf •_' •_<

i":
1

^. 0£6S
o>c r i' '_ l_

-. Ci c" "' q c*

4 0. £8 09
4£. 0333
43.7836
45.5349
4 7 . c! o6 c!

49. 0376
5 0.7889
53.5403
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LULING

LA 18 LEVEE

MISSISSIPPI
RIVER

22l2'(674m)

DESTREHAN-

iL-!6l'(49mK El-I85(56m
— OPEN DREDGED CAISSONS

I
I

HORIZ CL 1187' (362 m)

£.

© © ©
260 178'- 165' -165'

(79m) 508' (155m)

3 AT 176.5' 16 3

460' (140m)

L-I50(46m)

3 AT 1765

1222' (372 m)

2745(837m)

3 AT 165'

495'(l5lm)

© ®
260'

(79m)

Figure B-2. Cable Stayed Span of Luling Bridge on

Mississippi River, Louisiana

Description

Overall length - 11080 ft. (3377 m)

Main span - 1222 ft. (372 m)

Cable-stayed girder length - 2212 ft. (674 m)

Total number of cables - Not available.

Special Features of Stay-Cables*

Number of wires in a cable - 108 (Group IV) to 307 (Group I)

Wire diameter - 0.25 in. (6 mm) ASTMA421 type

Cable Length - 200 ft. (61 m) to 580 ft. (177 m)

Outer diameter of cable - 6 in. (15 cm)

Wire stress range - 108 ksi (745 MPa)

* Information obtained in consultation with Prescon. Corp. The figures are

approximate.
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Luling Bridge Group I Cables

NDRMRL FDRCE= 17 00

FREQ.DF EERM (CYCLE- P. S> .

(KIPS;-

.FREQ.DF STRING (CYCLE. P. S>

NDDE = 1

MDDE= a
MDIiE=

•"•

MDDE= 4

NDDE =
NDnE = 6
NDDE= 1

MDDE= 3

MDDE= y
MDDE = 1

MDDE= 11

NDDE= 1 C

MDDE= 1
'-'

MDDE = 14
MDDE= 1 C

1 _•

MDDE= 1 €•

MDDE= 1 i

MDDE= IS
MDDE= 1

9

MDDE = £0
MDDE= £1
MDDE = C£.

MDnE= I'll

MDDE= £4
MDDE= •

-iC

MDDE= £6
MDDE= C f

'

MDDE= £8
MDDE= £9
MDDE= 3

.395991
1.79221
c bb fi !-;9
-.1' •

cr i-
_''Z 624

4. 4E 45

6. £8463
7. 13896
3. 091 09
8. 99725
9. 9 0566
10.8165
11.7301
12. 6466
13.5662
14.4892
15.4157
16.346
17. 28 03
18.2138
19.1617
£0. 1092
£ 1 . 06 1

5

££. 0188
££.9314
£3.9494
£4.9£3
£5.90£5
£6. 8879
£7. 3796

. yy.U7c!J

1.73145
ii! . t- f c 1 f'

3.56289
4.45361
5.34434
6. £35 06
7. 12578
3. 0165
3. 90723
9. 79795
0. 6887
1 . 5794
£. 47 01

3. 36 03
4.3516
5. 1423
6. 033
6. 9237
7.8145
8. 7 052
9.5959

2 0.4866
c' 1 . •-> (' f o

22. 2631
23. 1583
24. 0495
24.94 0£
£5.831
cd. (' c 1 r'
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rfUKHHL hUKUb= lbUU '.Ml-i,'

FREQ.OF BERN CCYCLE-. P. S> FREQ.DF STRING OIYCLE . P. S.

MDDE= 1 .369399 .334139
MDHE= 3 1.73903 1.73336
NDDE= 3 £.60914 £.59339
MDDE= 4 3.47994 3.45651
MDDE= 5 4.35167 4.33064
MDDE= 6 5.33453 5.13477
MDDE= 7 6.09333 6.0439
MDDE= 3 6.97431 6.91303
MDDE= 9 7.3536 7.77716
MDDE= 10 3.73343 3.64139
MDDE= 11 9.61463 9.5 0543
NDDE= 13 10.4994 10.3695
NDDE= 13 11.3369 11.3337
NDDE = 14 13.3775 13.0973
MDDE= 15 13.1713 13.9619
MDDE= 16 14.0634 13.3361
MDDE= 17 14.9693 14.69 03
NDDE= 13 15.374 15.554::
MDDE= 19 16.7339 16.4134
MDDE= 3 17.696 17.3336
MDDE= 31 13.6137 13.1467
MDDE= 33 19.5363 19.0103
MDDE= 33 30.4636 19.375
MDDE = 34 31.3963 30.7391
MDDE= 35 33.3341 31.6033
MDDE= 36 ' 33.3777 33.4673
NDDE= 37 34.337 33.3315
MDDE= 33 35.1333 34.1956
MDDE= 39 36.1433 £5.0597
NDHE= 30 37.1116 35.9339
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MDRMflL FDRCE= 15

FREQ.DF BERN :ycle.p.s>

CKIPS>

FREQ.DF STRING (CYCLE. P. S>

MDDE= 1

MDDE= £

MDDE = 3

MDDE = 4

MDDE= 5

MDnE= 6
MDDE= 7

MDDE= 3
MDDE= 9
MDDE =

NDDE=
MDDE=
MDDE =
NDnE =
NDDE=
NDDE=
MDDE =
MDDE =
MDDE =
MDDE =

MDDE =
MDDE =
MDDE=
NDDE =
NDDE =
MDDE =
MDDE =

MDDE =
MDDE =
NDDE =

4

E'O

£1

4

.341963 . 336633
1.63417 _ 1 . 67333
c! . 5 c 6 8 6 3.51 06
3. 37 036 3.34675
4.31464 4. 13344
5. 06 033 _ _. __ _. 5. 03013
5. 90735 _. __ _ _" . •= _'b O C
Li ~7C itocb . r _> _' y _> 6.69351
7. 6 0659 7.53019
3.45937 !-! . 366 33

9.31455
0. 1734
1 . 033
1 . 3963
3. 7639
3 . 6 3: 4 6

4.5 09
5.3374
6. £7 01

7. 1573
8. 0491
3. 9453
9.8476

£0. 7548
£1 . 6674
-i -i c- 1-| C i-icc

.

._'o •_' y

£3.5103
£4.44 03
d •_' !• i r r

£6.3211

'>. £0357
0. 04 03
0. 8769
1.7136
£.55 03

4. ££37
5. 06 04
5.3971
6. 7333
7.57 05
3.4 071
9. £438

£0. 08 05
£0.9172
£1.7539
££.59 06
33.4c'73
£4. £64
£5.1 06
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NORMAL FDRCE= 1400

FREQ.DF BEAM (CYCLE- P. S)

(KIPS.:-

.FREQ.DF STRING T:l_E.P.S>

MDDE= 1 . '•:513597 .803317
MODE= C 1 . 62744 1.61663
MODE= •~i C i,44179 2.42495
MODE= 4 3 25688 ______ O • Cl'Z'C f

MODE= j 4 . 07297 4. 04158
MDDE= £, 4 .89031 __ 4.3499
MDDE= i"'

cr .70915 c £ cr .- -i -.
_i . t- _' O C C

NDDE = s £. , 52973 6.46654
NDDE= 9 "7

. 35229 __ 7.27435
NDDE= 1 8 . 177 09 _ 8. 08317
NDDE = 11 9 . 0437 8.39149
NDDE= 1 c 9 . 33437 9.6998
MOHE= 1 _> 1 0.6673 1 0.5 031
MDDE= 14 11.5 035 11.3164
MODE= 1

—
1 _ __ 12.3431 __ __. 12. 1248

riDDE= 1 _> 13. 1864 _ 12.9331
MDDE= 1 r 14. 0336 13.7414
NDDE= 18 __ __ 14.8849 ______ 14.5497
MDDE = 1 9 15.74 06 h c -. cr .-i

NODE= £0 16. 6 09 16. 1663
NDDE= £1 17.4661 16. 9747
MODE= c c 13.3363 __ 1 i' f O -'

NDDE = CO 19. £118 _ 13.5913
MDDE= £4 £0. 09£3 19. 3996
MDDE = -crC _i —.—. — -_ 20. 9795 2 0. 2 079
MDDE= 26 21.3721 21 . 0162
NDDE= C (' _ cc • i' r U o _ 21.3246
NODE= CO 23. 6759 22". 63£9
NODE= £9 •~i A C" i~t ""7 _* £3.4412
MDDE= 3 5.5 06 24.2495
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MDRMRL FDF:CE= 1 3 CKIF'•' '•-."

FREQ.DF BERN <CN'CLE.P.S>_.__FREQ. DF STRING

MDDE = 1 .734193 .778914
MDDE= C _ _ _ 1 . 56365 1 . 55783
MDDE = _> C 35362 __ 33674
MDDE= 4 ____ _ •Z* 13937 J' 11566
MDDE= •~i 926 1

6

•"_• 39457
MDDE= 6 4. 71424 4 . 67348
MDDE = r

c
_l

. 5 0333 _• i 4524
MDDE= 3 6

1

. 29532 _ »_• . 23131
MDDE= Q "7

. cm:!y 8 c' _ 1 i . 01 023
MDDE = 1 _ _ _ _ r' ,

3.':3464 1*
i.73914

MDDE= 11 3 . 6t33 04 3. . 563 05
MDDE = 1 (C Q .4:;3425 Q

. 34697
MDDE= 1

'"-'

1 0. 2335 ,.. __,.__„ 10. 1259
NDDE = 14 __ _ _ 11. 0961 1 0. 9 048
MDDE = 1

cr
____ 1 1 . 9 073 1 1 . 6337

MDDE = 1 b _ Id r c c o 12. 4626
MDDE = 1 r

, ,
13.5413 13.2415

NDDE = 13 14.3647 14. 02 05
MDDE= 1 9 15. 1925 14.7994
MDDE = 2 16. 0252 1 _' . _' r o •

MDnE= £1 .

, 16. 3623 ________ 16.3572
MDnE= CC 17. 7057 . ,

17. 1361
MDDE= l"L •_» 13.554 17.915
MDDE= 24 19.4031 13. 6939
NDDE= _ —_ —— 2 0. 263 19.4729
MDDE = 26 21. 134 2 0. 2513
NDDE = C i' 22. 064 21 . 03 07
MDDE = c o _ 22.3354 21 . 3 096
NDDE = 29 c o » i r 1 c _____

-| -| C- -i I". ETC C . •_'O O - 1

MDDE = 3 c!'l.i3639 c 3.3674

vT:LE.P.S>
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MDRNRL FORCE = 1 £ ckips;

FREQ.DF BERM (CYCLE. P. S> _.__FREQ.DF STRING •XYCLE.P. 3- .•'

MDDE= 1 .753643 . 743 J 5

7

MDDE= a 1 C M ~?CT
1 . /-_! U 1 _' •_' 1.49671

NDDE= 3 £. £6£ £. £45 07
MDDE= 4 o 017£6 £. 99343
MDDE= S' m 7736 .Z' , 74173
MDDE= f. 4. 531 £9 4 .49014
NDDE= 1

._l m £9059 ,_i ,£335
MDDE= 3 6

.

05173 ._i
. 33bob

MDDE= Q 6

.

31511 6 .73521
MDDE = 1

"7 58 085 "7
. 48357

MDDE= 11 C » 34937 O .£3193
MDDE= 1 C Q

m 13 063 o . 98 033
MDDE= 1

'-' 9

.

39517 C|
. 73864

MDDE= 14 10.6733 10.477
MDDE= 1 C

I _' 11 . 4549 11. ££54
MDDE = 1

6

1£ .3405 11.9737
MDDE= 1 r lo . 03 04 1 iii reel
MDDE = 13 1

'-'

. 3343 13.47 04
MDDE= 1

3

14 . 6338 14.3138
MDDE = 3 1 •_' . 4378 14.9671
MDDE= £1 1 t- C I' f 15.7155
MDHE = C C •j

"7
. 0517 16.4639

MDDE= C -1'
1 "7

• _ r' c lr.clcc
MDDE= £4 > 1 g .6931 17.96 06
MDDE = 1 3 . 53 05 13.7 039
MDDE= £6 £L .3691 19.4573
NnnE= C i' £1 .3144 3 0. £056
MDDE= CO CC . 0664 3 0.954
MDDE= £9 CiH . 9£55 £1.7 0£4
MDDE = 3 £ :2 .7918 £ £'.45 07
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NORMAL FDRCE= 1100

FREQ.DF BERN (CYCLE. P. S> .

ckips;-

.FREQ.DF STRING (CYCLE.

P

MDDE= 1 .7£1785 .716497
MDDE= C 1 . 44335 1 . 43399
MODE= _• __ __ __ £. 16643 3. 14949
NDDE= 4 . .. ._ £. 83996 _ 3. 86599
MDDE= 3.61456 3.58349
NDDE= 6 __ _ _ 4.34 058 4. £9893
NDDE= I' 5. 06337 5. 01548
MDDE= o 5.79794 5.73198
MDDE= 9 i" e- •-, .- .-• e-

„ „ _ _ 6.44848
MDDE= 1 ,_. ,,.. .., _ 7. £64£7 7. 16497
MDDE= 11 3. 0149 7.33147
MDDE= 1 i~ 3.74177 3. 59797
NDDE = 1

""-' 9.43533 9.31447
MDDE= 14 1 0. £336 1 0. 031
MDDE= 1 c _______ 1 0. 9337 — — — 1 0. 7475
MDDE= 1

6

__ __ __ 1 1 . 7339 1 1 . 464
MDDE = l r . 13.4935 13. 18 05
MDDE= 13 .__-_-_ 13. £6£8 1£. 897
MDHE = 1 9 _ .,. ._

.

14. 0319 __.___, 13.6135
NDDE= £0 14. 3 063 14.3399
MDDE= £1 _ __^_ 1 _' • _ioo _ 15. 0464
MDDE= cc _ . -. „ _ 16.3713 _____ 15. 76£9
NDDE= c o 17. 16£6 —, — -,,— 16.4794
MDDE = £4 — _ _ _, 17. 96 __ 17. 1959
NDDE = IS. 7638 ... ._ ... „. 17. 91 £4
NDDE= £6 19.5743 13.6839
NDDE= C ('

, ._ ._ £0.3914 19.3454
MDDE= CO _______ £1.2157 3 0. 0619
MDDE = £9 ££. 047£ 80. 7784
NDDE= 3 c c • oo t«c £1.4949
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NORMAL FDRCE= 1000

FREQ.OF BEAM CCYCLE. P. S>

::kips::'

.FREQ.OF STRING :le.p.s;

MODE= 1 . 63c 446 .633153
MODE= CL 1.37719 __ 1.36631
MODE= ~i C , 06653 3. 04946
MDnE= 4 c. . 75674 __ 8. 73861
NDDE= c

__ 3 .44314 3.41577
MDDE= 6 4 . 14108 4. 1.198:98'

MDDE= r 4 , S3 567 4. 788 07
MDDE= 8 -_l _' -Z 333 _ 5.46583
MDDE= 9 6 • C -2 144 6. 14833
MODE= 1 ____ 6 9:] 3 1

5

6.33153
MDDE= 11 _«__-._ r 68 f r i" 7.51463
MDDE= 1 c 3 .34561 8. 19784
MDDE= 1

"-'

_—_-___ Q
. 05694 3. 38:U99

MDDE= 14 —. — _—_ •51
. 778 05 9.56414

MDDE= 1 _' 10.4918 1 0. 3473
MDDE = 1 6 11.8147 1 0. 93 05
MODE = 1 i*" 1 1 . 9487 11.6136
MODE = 13 1 8 . 6757 18.3963
MDDE= 1

9

13.4137 18. 9799
MDDE= 3 14. 1578 13.6631
MDDE= 31 14. 9 063 14.3468
MDDE= C C _ 15.6613 15. 0894
MDDE = C _> „ ,,_ _,. .., 16.4885 1 _ . I" 1 C _i

MDIiE= 84 17.19 16. 3957
MDDE= _ _ _ _ 17.9648 _ 17. 0788
MDDE= £b 13.7453 1 f • i' bC
MDDE = C. i 19.5335 13.4451
MDDE= C C' 3 0. 3891 __ 19. 1383
MDDE = 89 81. 1388 19.8114
MDDE = 3 c l.'E'438 8 0. 4948
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NDRMRL FDRCE= 900 <KIPS>

FREQ.DF BEAM (CYCLE. P. S> FREQ.DF STRING (CYCLE. P,

.643 097
l.£9619
1.94429
£.59239
3.24 043
3.33353
4.53668
5. 13477
cr i—i

- -i - ~?
_' O -' i— '-' I

6.43 097
7. 13906
i . r < i 1 1>

c'.4c'5iz.'6

9. 07335
9.72145
10.3695
11.0176
11.6657
12.3133
12.9619
13.61
14.2531
14.9 062
15.5543
16.2 024
16.35 05
17.4936
13.1467
13.7948
19.4429

MDDE = 1 .653393
MDDE= C. 1.3 071
MDDE= 3 1. 96143
MDDE= 4 C 61669
MDDE= cr

,_i _ O 27321
MDBE= 6

~» 93127
MQDE= r 4. 59121
MDDE= 3 cr

_' i 25331
MDDE = 9 T -M -,, . -_ 9179
MDDE = 1 6 tr i~i cr -. _"

•_'O •_•CO

MDDE= 11 r" i

- cr cr t 1

MDDE= 1 C
"7

. 92953
MDDE= 1

""-'

8 , 6 07 04
MDDE= 14 Q .23851
MDDE = 1 cr 9 .97424
MDDE= 1

6

1 0. 6645
NDDE= l r* _ 1 1 . 3596
MDDE= 13 12. 0599
MDDE= 1 9 1 c • fb _' _'

NDDE= 2 m 13.4767
MDDE= 21 —._-__ 14. 1939
NDDE = c c 14.9173
MDDE = CZ' 15.6471
MDDE = 24 16. 3337
NDDE= -. cr

1 r' . 1 c' f' iz

MDDE= 26 17. 3779
MDDE = c r 18. 636
MDnE = CO 19.401

8

NDDE = 29 ______ 20. 1756
MDDE = 3 2 "i .j cr -? cr
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NORMAL FDRCE= SOU CKIPS*

FREQ.DF BEAM <GVCLE. P. S> FREQ.DF STRING (CYCLE.

P

MDDE= 1 .616334 .611031
MDDE= i_ 1 . £33 1 . £££06
MDDE= •~>

1.,85032 1.S33 09
MDDE= 4 C i 46365 .___._ £.44412
MDDE= c

_, „ __, ___
O uyy^y _ 3. 05516

MDDE= 6 _ „ _ _
~i .7 0959 _ 3. 66619

MDDE= r* __ __ __ _ 4. , 33286 "T 1— 1 f t 1

mdde= •p
t __ 4. 95843 4.88825

MDIiE= 9 c 53664 5.49928
MDnE= 10 _ _ 6

.

.21779 6. 11031
MDDE= 11 _ €• . , o5££ _____ 6.73134
MDDE = 12 _ _

"7 .4902 r c<oc -z> f

NDDE= 13 _____ s . 13309 _ __ _ 7.94341
NDDE= 14 8 .77318 3.55444
NDDE= 15 9 . 42878 9. 16547
MDDE= 16 __ 1 0. 03 4

£

9. 7765
NDDE= 17 _ _ 10.7447 _ 1 0. 3375
MDDE= IS _ 11.4106 _ __ _ 1 0. 99S6
MDDE= 19 _ _ 1£. OSS

2

_ 1 1 . 6 096
MDDE= £0 __ ^

.

1£. 7597 _>__,_ 1£. ££06
MDDE= £1 13.4435 12/8317
MDDE= cc _____ 14. 1339 13.4427
MDDE= CO _ _.

_

14.331 _ 14. 0537
NDnE = 24 1 c _ •-.C -

i

1 _i . _" Z- _' C _ _ _ _ 14.6647
MDDE= _ _ .16. £467 _ _ 1 •_! . C 1 _'O
MDDE= £6 16.9658 15.SS68
MDDE= l_ i 17. 69£7 16.4973
NDDE= c o _____ 18.4277 _ 17.1 089
MDDE= £9 _ _ _ _ 19.171 _ 17.7199
MDDE= 3 r?. 9228 13. 33 09
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Luling Bridge Group IV Cable

NORMAL FORCE= 600 <KIPS)

FREQ.DF BEAM (CYCLE. P. S> FREQ.OF STRING (CYCLE.

P

MDDE= 1 £.614 •~i cr i

-
i
-? - -•

C • _' _! 1 -Z' 4_

MODE = C _____ 5. £2999 5. 17465
MODE= •~> 7.84991 __.__ 7. 76197
MODE= 4 10.4758 10.3493
MODE = tr 13. 1095 __.__ IS. 9366
MODE= 6 1 cr -? cr -

. . .. _
,
15.5239

MODE= "7
_ IS. 4 OSS 13.111 3

MODE= s £1 . 077£ £0. 6986
MODE = Q £3. 7617 £3. £859
MODE= 1 £6. 4637 - cr i

_
i
-7 - •-

MDDE= 11 £9. 1S49 _ £8. 46 06
MODE= 1 c 31.9874 31. 0479
MODE = 1

'"-' 34.69£S 33.6358
MODE = 14 37.4829 36 . c!8 c!5
MODE = 1 cr

1 _' 4 0. £996 _ 33.3098
MODE= 1 6 43. 1445 .... 41.3972
MODE= 1 r ., 46. 0193 43.9845
MODE = IS 48.9857 46.5718
MOnE= 1

9

_». 51.8654 49. 1591
MODE = 2 54.S398 51.7465
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NDRMflL FDRCE= 500 CKIPS>

FREQ.DF EERM (CYCLE. P. S> FREQ.DF STRING (CYCLE. P,

MDDE= 1 2.33364 2 . 36 1 39
MDDE= C 4.77944 ______ 4.72378
MQDE= ~i

___ 7. 17456 r . -
.

-- - -, 7. 08568
MDDE = 4 9.57616 9.44757
MDDE = c

_l 1 1 . 9864 11.3 095
MDDE= 6 __ __ _ 14.4 074 —._ — — 14. 1714
MDDE = r _ _ _ 16.3412 ____——, 16.5332
MDDE= 3 19.29 13.3951
MDDE= 9 _ _ 21.7559 —.—.__-

- 1 --ic -?
C 1 . lL •_' i

MDDE= 1 _ _ 24.24 08 _ _ _ _ 23.6139
MDDE= 11 26. 7468 25.98 08
MDDE = 1 c 29. 2759 88.3427
MDDE = 1

' -'

__ _ 31.33 30. 7 046
NDDE= 14 _. «_ —. _ 34.41 11 33. 0665
NDDE= 1 -' 37. 021 35.4234
MDDE= 1

6

39. 6616 _ 37. 7903
MDDE= 1 r 42.3347 40. 1522
MDDE= 1 3 _ 45. 042 42.5141
MDDE= 1 9 J_ 4 r . i o _i z- 44.8759
NDDE= 2 50. 5662 47. i_!

'•

_i78
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MDRMRL FQRCE= 400

FREQ.DF BERM (CYCLE. P. S)

:kips>

..FREQ.DF STRING (CYCLE.

P

MDDE= 1

MDDE= £
MDDE= 3
MDDE= 4
MDDE= 5
NDDE = 6
MDDE= 7
MDDE= 8
MDDE= 9
NDDE= 10
MDDE= 11

MDDE= 13
MDDE= 13
MDDE= 14
MDIiE= 15
MDDE = 16
MDDE= 17
NDDE= IS
NDIiE= 19
MDDE= 3

3. 13936
4.33115
6. 43778
8.58165
1.7453
3. 98 07
5. 1107
r.3173
?.5439

81.7393
34. 06 01

36.3561
83.6799
31. 0335
33.419
35.3384
38.8937
4 0.7866
43.319

.^__ 45.3987

8. 11354
4.885 08

3.45016
10.5637
18.6758
14.7878
16.9003
19.0138
81. 1854
33.3379
-•cr -ic- i-icrC _' . • _• U -'

37. 463
-.1-, IT -? C- C-cr.ji j •_>

31.6881
33. 8 06
35.9138
33. 0357
40. 1388
48.85 08
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NDRMRL FDRCE= 300 <KIPS>

FREQ.DF BERN (CYCLE. P. S> FREQ.DF STRING (CYCLE.

P

MDDE= 1

MDDE= £
MDDE= 3
MDDE= 4

NDDE= 5

NDDE= 6
MDDE= 7
MDDE= 8
MDDE= 9
NDDE =
MDDE=
MDDE =
MDDE =

MDDE=
MDDE =
MDDE=
MDDE=
MDDE=
NDDE =
MnriF=

l

1.8564:
7157

4'

£1

£9
31

19
65

1 5 1

3

0354
04 1£
OS 15
0£S7
0651
133£
CO •-' .

373

1

. I. ill.

33 06

1. 53951
3. 659 03
5

.

43854
r . 318 06
ci

m 14757
1 .9771
1 c . 3 066
14 .6361
1 6 . 4656
18 .£951
£0 . 1£47
£1 . 954£
C !•

"7 ;Z; ~; "7

-. cr .6133
c r . 4437
£9 C i* c c

31 .1017
Z'C .9313
3476 08

1 59 03
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NORMAL FORCE= £00

FREQ.OF BERN (CYCLE. P. S>

:kips>

._freq.of string (cycle. p.

MODE= 1

MODE= £
MDDE= 3

MODE= 4

MODE= 5

MODE- 6

MODE= 7
MDDE= 8
MODE= 9
MOHE= 10
MDnE= 1 1

MDDE= 1£
NDDE= 13
NDDE= 14
MDDE= 15
MOIiE= 16
MDDE= 17

MODE= 13
MDDE= 19
MDDE= £0

1

4
04539
57655
11

£4
10.3
13.4
14.'"'

15.

;-: 1 1

•-•

.4 1

:

. 1 . 49379

.__ 3.93758

. 4.43133

. 5.97517
7.46396
3.96375

.__ 10.4565

.__ 11.95 03
13.4441

*U.S. GOVERNMENT PRINTING OFFIC



FEDERALLY COORDINATED PROGRAM (FCP) OF HIGHWAY
RESEARCH AND DEVELOPMENT

The Offices of Research and Development (R&D) of

the Federal Highway Administration (FHWA) are

responsible for a broad program of staff and contract

research and development and a Federal-aid

program, conducted by or through the State highway

transportation agencies, that includes the Highway

Planning and Research (HP&R) program and the

National Cooperative Highway Research Program

(NCHRP) managed by the Transportation Research

Board. The FCP is a carefully selected group of proj-

ects that uses research and development resources to

obtain timely solutions to urgent national highway

engineering problems.*

The diagonal double stripe on the cover of this report

represents a highway and is color-coded to identify

the FCP category that the report falls under. A red

stripe is used for category 1, dark blue for category 2,

light blue for category 3, brown for category 4, gray

for category 5, green for categories 6 and 7, and an

orange stripe identifies category 0.

FCP Category Descriptions

1. Improved Highway Design and Operation

for Safety

Safety R&D addresses problems associated with

the responsibilities of the FHWA under the

Highway Safety Act and includes investigation of

appropriate design standards, roadside hardware,

signing, and physical and scientific data for the

formulation of improved safety regulations.

2. Reduction of Traffic Congestion, and
Improved Operational Efficiency

Traffic R&D is concerned with increasing the

operational efficiency of existing highways by

advancing technology, by improving designs for

existing as well as new facilities, and by balancing

the demand-capacity relationship through traffic

management techniques such as bus and carpool

preferential treatment, motorist information, and

rerouting of traffic.

3. Environmental Considerations in Highway
Design, Location, Construction, and Opera-

tion

Environmental R&D is directed toward identify-

ing and evaluating highway elements that affect

* The complete seven-volume official statement of the FCP is available from

the National Technical Information Service, Springfield, Va. 22161. Single

copies of the introductory volume are available without charge from Program

Analysis (HRD-3), Offices of Research and Development, Federal Highway

Administration, Washington, D.C. 20590.

the quality of the human environment. The goals

are reduction of adverse highway and traffic

impacts, and protection and enhancement of the

environment.

4. Improved Materials Utilization and
Durability

Materials R&D is concerned with expanding the

knowledge and technology of materials properties,

using available natural materials, improving struc-

tural foundation materials, recycling highway

materials, converting industrial wastes into useful

highway products, developing extender or

substitute materials for those in short supply, and

developing more rapid and reliable testing

procedures. The goals are lower highway con-

struction costs and extended maintenance-free

operation.

5. Improved Design to Reduce Costs, Extend
Life Expectancy, and Insure Structural

Safety

Structural R&D is concerned with furthering the

latest technological advances in structural and

hydraulic designs, fabrication processes, and

construction techniques to provide safe, efficient

highways at reasonable costs.

6. Improved Technology for Highway
Construction

This category is concerned with the research,

development, and implementation of highway

construction technology to increase productivity,

reduce energy consumption, conserve dwindling

resources, and reduce costs while improving the

quality and methods of construction.

7. Improved Technology for Highway
Maintenance

This category addresses problems in preserving

the Nation's highways and includes activities in

physical maintenance, traffic services, manage-

ment, and equipment. The goal is to maximize

operational efficiency and safety to the traveling

public while conserving resources.

0. Other New Studies

This category, not included in the seven-volume

official statement of the FCP, is concerned with

HP&R and NCHRP studies not specifically related

to FCP projects. These studies involve R&D
support of other FHWA program office research.



Q00S714L


